
Chapter �

Arrays

A programmer is concerned with developing and implementing algorithms for a variety of tasks�
As tasks become more complex� algorithm development is facilitated by structuring or organizing
data in specialized ways� There is no best data structure for all tasks� suitable data structures must
be selected for the speci�c task� Some data structures are provided by programming languages�
others must be derived by the programmer from available data types and structures�

So far we have used integer� �oating point and character data types as well as pointers to
them� These data types are called base or scalar data types� Such base data types may be
used to derive data structures which are organized groupings of instances of these types� The C
language provides some widely used compound or derived data types together with mechanisms
which allow the programmer to de�ne variables of these types and access the data stored within
them�

The �rst such type we will discuss is called an array� Many tasks require storing and processing
a list of data items� For example� we may need to store a list of exam scores and to process it in
numerous ways� �nd the maximum and minimum� average the scores� sort the scores in descending
order� search for a speci�c score� etc� Data items in simple lists are usually of the same scalar
type� for example a list of exam scores consists of all integer type items� We naturally think of a
list as a data structure that should be referenced as a unit� C provides a derived data type that
stores such a list of objects where each object is of the same data type � the array�

In this chapter� we will discuss arrays� how they are declared and data is accessed in an
array� We will discuss the relationship between arrays and pointers and how arrays are passed
as arguments in function calls� We will present several example programs using arrays� including
a revision of our 	payroll
 task from previous chapters� One important use of arrays is to hold
strings of characters� We will introduce strings in this chapter and show how they are stored
in C� however� since strings are important in handling non�numeric data� we will discuss string
processing at length in Chapter �
�

���

��� CHAPTER �� ARRAYS

��� A Compound Data Type � array

As described above� an array is a compound data type which allows a collection of data of the
same type to be grouped into a single object� As with any data type� to understand how to use an
array� one must know how such a structure can be declared� how data may be stored and accessed
in the structure� and what operations may be performed using this new type�

����� Declaring Arrays

Let us consider the task of reading and printing a list of exam scores�

LIST
� Read and store a list of exam scores and then print it�

Since we are required to store the entire list of scores before printing it� we will use an array
hold the data� Successive elements of the list will be stored in successive elements of the array�
We will use a counter to indicate the next available position in the array� Such a counter is called
an index into the array� Here is an algorithm for our task�

initialize the index to the beginning of the array

while there are more data items

read a score and store in array at the current index

increment index

set another counter� count � index � the number of items in the array

traverse the array� for each index starting at the beginning to count

print the array element at index

The algorithm reads exam scores and stores them in successive elements of an array� Once the list
is stored in an array� the algorithm traverses the array� i�e� accesses successive elements� and prints
them� A count of items read in is kept and the traversal continues until that count is reached�

We can implement the above algorithm in a C program as shown in Figure ���� Before ex�
plaining this code� here is a sample session generated by executing this program�

���List of Exam Scores���

Type scores� EOF to quit

��

�	

�

��

D

���Exam Scores���

���� A COMPOUND DATA TYPE � ARRAY ���

�� File� scores�c

This program reads a list of integer exam scores and prints them out�

��

�include �stdio�h�

�define MAX ���

main��

� int exam�scores�MAX�� index� n� count�

printf�����List of Exam Scores����n�n���

printf��Type scores� EOF to quit�n���

�� read scores and store them in an array ��

index � ��

while ��index � MAX� �� �scanf���d�� �n� � EOF��

exam�scores�index!!� � n�

count � index�

�� print scores from the array ��

printf���n���Exam Scores����n�n���

for �index � �� index � count� index!!�

printf���d�n�� exam�scores�index���

"

Figure ���� Code for scores�c

��� CHAPTER �� ARRAYS

� � �

� � �

int exam scores�MAX�

�
�
�

i

MAX � �
MAX � �

exam scores���
exam scores���
exam scores���

exam scores�i�

exam scores�MAX���
exam scores�MAX���

subscripted expressionindex

Figure ���� An Array of size MAX

��

�	

�

��

Referring to the code in Figure ���� the program �rst declares an array� exam scores�MAX��
of type integer� This declaration allocates a contiguous block of memory for objects of integer
type as shown in Figure ���� The macro� MAX� in square brackets gives the size of the array�
i�e� the number of elements this compound data structure is to contain� The name of the array�
exam scores� refers to the entire collection of MAX integer cells� Individual objects in the array may
be accessed by specifying the name of the array and the index� or element number� of the object� a
process called indexing� In C� the elements in the array are numbered from
 to MAX � �� So� the
elements of the array are referred to as exam scores���� exam scores���� � � � � exam scores�MAX

� ��� where the index of each element is placed in square brackets� These index speci�ers are
sometimes called subsctipts� analogous to the mathematical expression exam scoresia� These
indexed or subscripted array expressions are the names of each object in the array and may be
used just like any other variable name�

In the code� the while loop reads a score into the variable� n� places it in the array by assigning
it to exam scores�index�� and increments index� The loop is terminated either when index

reaches MAX �indicating a full array� or when scanf�� returns EOF� indicating the end of the data�

���� A COMPOUND DATA TYPE � ARRAY ���

We could have also read each data item directly into exam scores�index� by writing scanf�� as
follows�

scanf���d�� �exam�scores�index��

We choose to separate reading an item and storing it in the array because the use of the increment
operator� !!� for index is clearer if reading and storing of data items are separated�

Once the data items are read and stored in the array� a count of items read is stored in the
variable count� The list is then printed using a for loop� The array is traversed from element

to element count � �� printing each element in turn�

From the above example� we have seen how we can declare a variable to be of the compound
data type� array� how data can be stored in the elements of the array� and subsequently accessed�
More formally� the syntax for an array declaration is�

�type�speci�er��identi�er���size���

where the �type�speci�er� may be any scalar or derived data type� and the �size� must evaluate�
at compile time� to an unsigned integer� Such a declaration allocates a contiguous block of memory
for objects of the speci�ed type� The data type for each object in the block is speci�ed by the
�type�speci�er�� and the number of objects in the block is given by �sf �size� as seen in Figure
���� As stated above� the index values for all arrays in C must start with
 and end with the
highest index� which is one less than the size of the array� The subscripting expression with the
syntax�

�identi�er���expression��

is the name of one element object and may be used like any other variable name� The subscript�
�expression� must evaluate� at run time� to an integer� Examples include�

int a�����

float b�����

char s������

int i � ��

a�#� � �#�

a�	� �
 � a�#��

b��� � �����

printf��The value of b��� is �f�n�� b�����

scanf���c�� �s�����

c�i� � c�i!���

Through the remainder of this chapter� we will use the following symbolic constants for many
of our examples�

��� CHAPTER �� ARRAYS

�� File� araydef�h ��

�define MAX ��

�define SIZE ���

In programming with arrays� we frequently need to initialize the elements� Here is a loop that
traverses an array and initializes the array elements to zero�

int i� ex�MAX��

for �i � �� i � MAX� i!!�

ex�i� � ��

The loop assigns zero to ex�i� until i becomes MAX� at which point it terminates and the array
elements are all initialized to zero� One precaution to programmers using arrays is that C does not
check if the index used as a subscript is within the size of the declared array� leaving such checks
as the programmer�s responsibility� Failure to do so can� and probably will result in catastrophe�

����� Character Strings as Arrays

Our next task is to store and print non�numeric text data� i�e� a sequence of characters which are
called strings� A string is an list �or string� of characters stored contiguously with a marker to
indicate the end of the string� Let us consider the task�

STRING
� Read and store a string of characters and print it out�

Since the characters of a string are stored contiguously� we can easily implement a string
by using an array of characters if we keep track of the number of elements stored in the array�
However� common operations on strings include breaking them up into parts �called substrings��
joining them together to create new strings� replacing parts of them with other strings� etc� There
must be some way of detecting the size of a current valid string stored in an array of characters�

In C� a string of characters is stored in successive elements of a character array and terminated
by the NULL character� For example� the string �Hello� is stored in a character array� msg��� as
follows�

char msg�SIZE��

msg��� � H�

msg��� � e�

msg��� � l�

msg�#� � l�

msg�%� � o�

msg�	� � $��$�

���� A COMPOUND DATA TYPE � ARRAY ���

�

index� � � � 	

� � ��
h

e

l

l

o

n�

�

Figure ���� A String Stored in Memory

The NULL character is written using the escape sequence �n
�� The ASCII value of NULL is
�
and NULL is de�ned as a macro to be
 in stdio�h� so programs can use the symbol� NULL� in
expressions if the header �le is included� The remaining elements in the array after the NULL may
have any garbage values� When the string is retrieved� it will be retrieved starting at index

and succeeding characters are obtained by incrementing the index until the �rst NULL character is
reached signaling the end of the string� Figure ��� shows a string as it is stored in memory�

Given this implementation of strings in C� the algorithm to implement our task is now easily
written� We will assume that a string input is a sequence of characters terminated by a newline
character� �The newline character is not part of the string�� Here is the algorithm�

initialize index to zero

while not a newline character

read and store a character in the array at the next index

increment the index value

terminate the string of characters in the array with a NULL char�

initialize index to zero

traverse the array until a NULL character is reached

print the array character at index

increment the index value

The program implementation has�

� a loop to read string characters until a newline is reached�

� a statement to terminate the string with a NULL�

� and a loop to print out the string�

The code is shown in Figure ��� and a sample session form the program is shown below�

Sample Session�

���Character Strings���

Type characters terminated by a RETURN or ENTER

�

 CHAPTER �� ARRAYS

�� File� string�c

This program reads characters until a newline� stores them in an

array� and terminates the string with a NULL character� It then prints

out the string�

��

�include �stdio�h�

�include �araydef�h�

main��

� char msg�SIZE�� ch�

int i � ��

printf�����Character Strings����n�n���

printf��Type characters terminated by a RETURN or ENTER�n���

while ��ch � getchar��� � $�n$�

msg�i!!� � ch�

msg�i� � $��$�

i � ��

while �msg�i� � $��$�

putchar�msg�i!!���

printf���n���

"

Figure ���� Code for string�c

���� A COMPOUND DATA TYPE � ARRAY �
�

Hello
Hello

The �rst while loop reads a character into ch and checks if it is a newline� which discarded
and the loop terminated� Otherwise� the character is stored in msg�i� and the array index� i�
incremented� When the loop terminates� a NULL character is appended to the string of characters�
In this program� we have assumed that the size of msg�� is large enough to store the string� Since
a line on a terminal is �
 characters wide and since we have de�ned SIZE to be �

� this seems a
safe assumption�

The next while loop in the program traverses the string and prints each character until a NULL
character is reached� Note� we do not need to keep a count of the number of characters stored in
the array in this program since the �rst NULL character encountered indicates the end of the string�
In our program� when the �rst NULL is reached we terminate the string output with a newline�

The assignment expression in the above program�

msg�i� � $��$�

can also be written as�

msg�i� � NULL�

or�

msg�i� � ��

In the �rst case� the character whose ASCII value is
 is assigned to msg�i�� where in the other
cases� a zero value is assigned to msg�i�� The above assignment expressions are identical� The
�rst expression makes it clear that a null character is assigned to msg�i�� but the second uses a
symbolic constant which is easier to read and understand�

To accommodate the terminating NULL character� the size of an array that houses a string must
be at least one greater than the expected maximum size of string� Since di�erent strings may be
stored in an array at di�erent times� the �rst NULL character in the array delimits a valid strin�
The importance of the NULL character to signal the end of a valid string is obvious� If there were
no NULL character inserted after the valid string� the loop traversal would continue to print values
interpreted as characters� possibly beyond the array boundary until it fortuitously found a NULL

�
� character�

The second while loop may also be written�

while �msg�i� � NULL�

putchar�msg�i!!���

�
� CHAPTER �� ARRAYS

and the while condition further simpli�ed as�

while �msg�i��

putchar�msg�i!!���

If msg�i� is any character with a non�zero ASCII value� the while expression evaluates to True�
If msg�i� is the NULL character� its value is zero and thus False� The last form of the while

condition is the more common usage� While we have used the increment operator in the putchar��
argument� it may also be used separately for clarity�

while �msg�i�� �

putchar�msg�i���

i!!�

"

It is possible for a string to be empty� that is� a string may have no characters in it� An empty
string is a character array with the NULL character in the zeroth index position� msg����

��� Passing Arrays to Functions

We have now seen two examples of the use of arrays � to hold numeric data such as test scores�
and to hold character strings� We have also seen two methods for determining how many cells
of an array hold useful information � storing a count in a separate variable� and marking the
end of the data with a special character� In both cases� the details of array processing can easily
obscure the actual logic of a program � processing a set of scores or a character string� It is often
best to treat an array as an abstract data type with a set of allowed operations on the array which
are performed by functional modules� Let us return to our exam score example to read and store
scores in an array and then print them� except that we now wish to use functions to read and
print the array�

LIST�� Read an array and print a list of scores using functional modules�

The algorithm is very similar to our previous task� except that the details of reading and
printing the array is hidden by functions� The function� read intaray��� reads scores and stores
them� returning the number of scores read� The function� print intaray��� prints the contents
of the array� The re�ned algorithm for main�� can be written as�

print title� etc�

n � read�intaray�exam�scores� MAX��

print�intaray�exam�scores� n��

Notice we have passed an array� exam scores� and a constant� MAX �specifying the maximum size
of the proposed list�� to read intarray�� and expect it to return the number of scores placed

���� PASSING ARRAYS TO FUNCTIONS �
�

in the array� Similarly� when we print the array using print intarray� we give it the array
to be printed and a count of elements it contains� We saw in Chapter � that in order for a
called function to access objects in the calling function �such as to store elements in an array�
we must use indirect access� i�e� pointers� So� read intaray�� must indirectly access the array�
exam scores� in main��� One unique feature of C is that array access is always indirect� thus
making it particularly easy for a called function to indirectly access elements of an array and store
or retrieve values� As we will see in later sections� array access by index value is interpreted as an
indirect access� so we may simply use array indexing as indirect access�

We are now ready to implement the algorithm for main�� using functions to read data into
the array and to print the array� The code is shown in Figure ���� The function calls in main��

pass the name of the array� exam scores� as an argument because the name of an array in an
expression evaluates to a pointer to the array� In other words� the expression� exam scores� is a
pointer to �the �rst element of� the array� exam scores��� Its type is� therefore� int �� and a
called function uses this pointer �passed as an argument� to indirectly access the elements of the
array� As seen in the Figure� for both functions� the headers and the prototypes show the �rst
formal parameter as an integer array without specifying the size� In C� this syntax is interpreted
as a pointer variable� so scores is declared aa an int � variable� We will soon discuss how arrays
are accessed in C� for now� we will assume that these pointers may be used to indirectly access
the arrays�

The second formal parameter in both functions is lim which speci�es the maximum number
of items� For read intaray��� this may be considered the maximum number of scores that can
be read so that it does not read more items than the size of the array allows �MAX�� The function
returns the actual number of items read which is saved in the variable� n� in main��� For the
function� print intaray��� lim represents the fact that it must not print more than n items�
Again� since arrays in C are accessed indirectly� these functions are able to access the array which
is de�ned and allocated in main��� A sample session for this implementation of the task would be
identical to the one shown earlier�

Similarly� we can modify the program� string�c� to use functions to read and print strings�
The task and the algorithm are the same as de�ned for STRING
 in the last section� except
that the program is terminated when an empty string is read� The code is shown in Figure ����
The driver calls read str�� and print str�� repeatedly until an empty string is read �detected
when s��� is zero� i�e� NULL�� The argument passed to read str�� and print str�� is str� a
pointer to �the �rst element of� a character array� i�e� a char �� The function� read str��� reads
characters until a newline is read and indirectly stores the characters into the string� s� The
function� print str��� prints characters from the string� s until NULL is reached and terminates
the output with a newline� Notice we have declared the formal parameter� s as a char �� rather
than as an array� char s��� As we will see in the next section� C treats the two declarations
exactly the same�

�
� CHAPTER �� ARRAYS

�� File� scores��c

This program uses functions to read scores into an array and to print

the scores�

��

�include �stdio�h�

�define MAX ��

int read�intaray�int scores��� int lim��

print�intaray�int scores��� int lim��

main��

� int n� exam�scores�MAX��

printf�����List of Exam Scores����n�n���

n � read�intaray�exam�scores� MAX��

print�intaray�exam�scores� n��

"

�� Function reads scores in an array� ��

int read�intaray�int scores��� int lim�

� int n� count � ��

printf��Type scores� EOF to quit�n���

while ��count � lim� �� �scanf���d�� �n� � EOF�� �

scores�count� � n�

count!!�

"

return count�

"

�� Function prints lim elements in the array scores� ��

void print�intaray�int scores��� int lim�

� int i�

printf���n���Exam Scores����n�n���

for �i � �� i � lim� i!!�

printf���d�n�� scores�i���

"

Figure ���� Code fore scores�c

���� PASSING ARRAYS TO FUNCTIONS �
�

�� File� string��c

This program reads and writes strings until an empty string is

read� It uses functions to read and print strings to standard

files�

��

�include �stdio�h�

�define SIZE ���

void print�str�char s����

void read�str�char s����

main��

� char str�SIZE��

do �

read�str�str��

print�str�str��

" while �str�����

"

�� Function reads a string from standard input until a newline is

read� A NULL is appended�

��

void read�str�char �s�

� int i�

char c�

for �i � �� �c � getchar��� � $�n$� i!!�

s�i� � c�

s�i� � NULL�

"

�� Function prints a string to standard output and terminates with a

newline�

��

void print�str�char �s�

� int i�

for �i � �� s�i�� i!!�

putchar�s�i���

putchar�$�n$��

"

Figure ���� Code for string��c

�
� CHAPTER �� ARRAYS

��� Arrays� Pointers� Pointer Arithmetic

Let us now examine how arrays are actually accessed in C� As we have seen� an array is a sequence
of objects� each of the same data type� The starting address of this array of objects� i�e� the
address of the �rst object in the array is called the base address of the array� The address of
each successive element of the array is o�set from the base by the size of the array type� e�g� for
each successive element of an integer array� the address is o�set by the size of an integer type
object� As we mentioned in the previous section� in C� the name of an array used by itself in
an expression evaluates to the base address of the array� That is� this value is a pointer type
and points to the �rst object of the array� The name of the array is said to point to the array�
Figure ��� shows an array� X�� with X pointing to �the �rst object of� the array� If the array is
an integer array� ��oat array� character array� etc�� then the type of X is int � �float �� char
�� etc��� Thus� the declaration of an array causes the compiler to allocate the speci�ed number of
contiguous cells of the indicated type� as well as to allocate an appropriate pointer cell� initialized
to point to the �rst cell of the array� This pointer cell is given the name of the array� Since X

points to X���� the following are equivalent�

X ����� �X���

Thus� the dereferenced pointer� �X� accesses the object� X���� i�e� the following are equivalent�

�X ����� X���

As we have seen� pointer variables point to objects of a speci�c type� We might suspect that they
can be increased or decreased to point to contiguous successive or preceding objects of the same
type� In C� adding one to a pointer makes the resulting pointer point to the next object of the
same type� �The value of the new pointer equals the original value of the pointer increased by
the size of the object pointed to�� For the array above� X ! � points to X���� the increase in the
pointer value is made by the appropriate size of the type involved� For example� if X is an integer
array and an integer requires � bytes� then the value of X ! � will be greater than that of X by
�� Adding k to a pointer results in a pointer to a successive object o�set by k objects from the
original� Thus� X ! � points to the start of the array �the �rst element� X����� X ! � points to
the next element� X���� and X ! k points to X�k� as can be seen in Figure ���� Similarly� �X�k� is
the same as X ! k� and X�k� is the same as ��X ! k�� Table ��� summarizes pointer arithmetic
and indirect access of elements of an array� Pointer arithmetic may also involve subtraction� the
resulting pointer points to a previous object o�set appropriately� Thus� for example� �X�#� � �

points to X���� �X�	� � # points to X���� and so on�

In C array access is always made through pointers and indirection operators� Whenever an
expression such as X�k� appears in a program� the compiler interprets it to mean ��X ! k�� In
other words� objects of an array are always accessed indirectly� As we have seen previously� this
makes it particularly easy for a called function to indirectly access elements of an array allocated
in the calling function to store or retrieve values� Let us see how function calls handle array access
using the program� scores��c of the last section� The relevant function calls in main�� and the
corresponding function headers are shown below for easy reference�

���� ARRAYS� POINTERS� POINTER ARITHMETIC �
�

�

�

�

�

�

�

� � �

� � �

subscripted expressionindex

X�n�

X���
X���
X���

X�i�

X or X � �
X � �
X � �

X � i

X � n � �
X � n � �

X�n���
X�n���

Figure ���� Pointer Arithmetic

Pointer Address of Array Indirect
Arithmetic Operator Subscripting Reference

X �
 �X�
� X�
� ��X �
�
X � � �X��� X��� ��X � ��
X � � �X��� X��� ��X � ��
X � � �X��� X��� ��X � ��
� � � � � � � � � � � �

X � k �X�k� X�k� ��X � k�

Table ���� Pointer Arithmetic and Indirect Access

�
� CHAPTER �� ARRAYS

main��

� int exam�scores�MAX��

���

n � read�intaray�exam�scores� MAX��

print�intaray�exam�scores� n��

"

int read�intaray�int scores��� int lim�

�

���

"

void print�intaray�int scores��� int lim�

�

���

"

When a formal parameter is declared in a function header as an array� it is interpreted as a pointer
variable� NOT an array� Even if a size were speci�ed in the formal parameter declaration� only a
pointer cell is allocated for the variable� not the entire array� The type of the pointer variable is the
speci�ed type� In our example� the formal parameter� scores� is an integer pointer� It is initialized
to the pointer value passed as an argument in the function call� The value passed in main�� is
exam scores� a pointer to the �rst element of the array� exam scores��� Figure ��� illustrates
the connection between the calling function� main��� and the called function� read intaray��� In
this case� the formal parameter� scores� is initialized to point to the value of exam scores which
is a pointer to �the �rst element of� the array exam scores��� The Figure also shows that lim is
initialized to �
�

Within the function� read scores��� it is now possible to access all the elements of the ar�
ray� exam scores��� indirectly� Since the variable� scores� in read intaray�� points to the
�rst element of the array� exam scores��� �scores accesses the �rst element of the array� i�e�
exam scores���� In addition� scores ! � points to the next element of the array� so ��scores

! �� accesses the next element� i�e� exam scores���� In general� ��scores ! count� accesses
the element exam scores�count�� To access elements of the array� we can either write ��scores
! count� or we can write scores�count�� because dereferenced array pointers and indexed array
elements are identical ways of writing expressions for array access�

The functions� read intaray�� and print intaray�� can be used to read objects into any

integer array and to print element values of any integer array� respectively� The calling function
must simply pass� as arguments� an appropriate array pointer and maximum number of elements�

These functions may also be written explicitly in terms of indirect access� for example�

�� Function reads scores in an array� ��

int read�intaray��int � scores� int lim�

� int n� count � ��

printf��Type scores� EOF to quit�n���

���� ARRAYS� POINTERS� POINTER ARITHMETIC �
�

�
���

�

main��

scores

exam scores

�

int

lim

�
�

�

�

�

read intaray� int 	

�

�

�

�

�

	

Figure ���� Array Pointers as Function Parameters

��
 CHAPTER �� ARRAYS

while ��count � lim� �� �scanf���d�� �n� � EOF�� �

��scores ! count� � n�

count!!�

"

return count�

"

Alternatively� since scores is a pointer variable� we can increment its value each time so that it
points to the next object of integer type in the array� such as�

�� Function reads scores in an array� ��

int read�intaray#�int � scores� int lim�

� int n� count � ��

printf��Type scores� EOF to quit�n���

while ��count � lim� �� �scanf���d�� �n� � EOF�� �

�scores � n�

count!!�

scores!!�

"

return count�

"

The �rst time the loop is executed� �scores accesses the element of the array at index
� The
local pointer cell� scores� is then incremented to point to the next element of the array� at index ��
The second time the loop is executed� �scores accesses the array element at index �� The process
continues until the loop terminates�

It is also possible to mix dereferenced pointers and array indexing�

�� Function reads scores in an array� ��

int read�intaray%�int scores��� int lim�

� int n� count � ��

printf��Type scores� EOF to quit�n���

while ��count � lim� �� �scanf���d�� �n� � EOF�� �

��scores ! count� � n�

count!!�

"

return count�

"

or�

�� Function reads scores in an array� ��

���� ARRAYS� POINTERS� POINTER ARITHMETIC ���

int read�intaray	�int � scores� int lim�

� int n� count � ��

printf��Type scores� EOF to quit�n���

while ��count � lim� �� �scanf���d�� �n� � EOF�� �

scores�count� � n�

count!!�

"

return count�

"

We can also consider parts of an array� called a sub�array� A pointer to a sub�array is also an
array pointer� it simply speci�es the base of the sub�array� In fact� as far as C is concerned� there
is no di�erence between an entire array and any of its sub�arrays� For example� a function call
can be made to print a sub�array by specifying the starting pointer of the sub�array and its size�
Suppose we wish to print the sub�array starting at exam scores�#� containing �ve elements� the
expression� �exam scores�#� is a pointer to an array starting at exam scores�#�� The function
call is�

print�intaray��exam�scores�#�� 	��

Alternately� since exam scores ! # points to exam scores�#�� the function call can be�

print�intaray�exam�scores ! #� 	��

The passed parameters are shown visually in Figure ���� If either of the above function calls
is used in the program� scores��c� the values of exam scores�#�� exam scores�%�� ���� and
exam scores��� will be printed�

��
�� Pointers� Increment and Decrement

We have just seen that an array name� e�g� aa� is a pointer to the array and that aa ! i points to
aa�i�� We can illustrate this point in the program below� where the values of pointers themselves
are printed� A pointer value is a byte address and is printed as an unsigned integer �using
conversion speci�cation for unsigned integer� �u�� The program shows the relationships between
array elements� pointers� and pointer arithmetic�

�� File� arayptr�c

This program shows the relation between arrays and pointers�

��

�include �stdio�h�

�define N 	

��� CHAPTER �� ARRAYS

�

�

�

main��

scores

exam scores

�

int

lim

�

�

�

�

read intaray� int 	

�

�

�

�

�

	

�

Figure ���� Pointer to a Sub�array

���� ARRAYS� POINTERS� POINTER ARITHMETIC ���

main��

� int i� j� aa�N��

printf�����Pointers� Arrays� and Pointer Arithmetic����n�n���

for �i � �� i � N� i!!� �

aa�i� � i � i�

printf��aa ! �d � �u� �aa��d� � �u�n�� i� aa ! i� i� �aa�i���

printf����aa ! �d� � �d� aa��d� � �d�n�� i� ��aa ! i�� i� aa�i���

"

"

In the loop� we �rst assign a value to each aa�i�� We then print values to show that pointers� aa
! i and �aa�i� are the same� i�e� that aa ! i points to aa�i�� Next� we print the array element
values to show that ��aa ! i� is the same as aa�i�� A sample output for the program is shown
below�

���Pointers� Arrays� and Pointer Arithmetic���

aa ! � � �	%
�� �aa��� � �	%
�

��aa ! �� � �� aa��� � �

aa ! � � �	%
�� �aa��� � �	%
�

��aa ! �� � �� aa��� � �

aa ! � � �	%
%� �aa��� � �	%
%

��aa ! �� � %� aa��� � %

aa ! # � �	%
�� �aa�#� � �	%
�

��aa ! #� � �� aa�#� � �

aa ! % � �	%

� �aa�%� � �	%

��aa ! %� � ��� aa�%� � ��

�In the host implementation where the above program was executed� two bytes are required for
integers� therefore� successive array element addresses are two bytes apart��

The next example shows that pointers may be incremented and decremented� In either case�
if the original pointer points to an object of a speci�c type� the new pointer points to the next
or previous object of the same type� i�e� pointers are incremented or decremented in steps of the
object size that the pointer points to� Thus� it is possible to traverse an array starting from a
pointer to any element in the array� Consider the code�

�� File� arayptr��c

Pointers and pointer arithmetic�

��

�include �stdio�h�

�define N 	

��� CHAPTER �� ARRAYS

main��

� float faray�N�� �fptr�

int �iptr� iaray�N�� i�

�� initialize ��

for �i � �� i � N� i!!� �

faray�i� � ��#�

iaray�i� � ��

"

�� initialize fptr to point to element faray�#� ��

fptr � �faray�#��

�fptr � ��� �� faray�#� � �� ��

��fptr � �� � ��� �� faray��� � �� ��

��fptr ! �� � ���� �� faray�%� � ��� ��

�� initialize iptr in the same way ��

iptr � �iaray�#��

�iptr � ��

��iptr � �� � ���

��iptr ! �� � ��

for �i � �� i � N� i!!� �

printf��faray��d� � �f �� i� ��faray ! ����

printf��iaray��d� � �d�n�� i� iaray�i���

"

"

The program is straightforward� It declares a �oat array of size �� and an integer array of the same
size� The �oat array elements are all initialized to
��� and the integer array elements to �� The
program also declares two pointer variables� one a �oat pointer and the other an integer pointer�
Each pointer variable is initialized to point to the array element with index �� for example� fptr is
initialized to point to the �oat array element� faray�#�� Therefore� fptr � � points to faray����
and fptr ! � points to faray�%�� The value of �fptr is then modi�ed� as is the value of ��fptr
� �� and ��fptr ! ��� Similar changes are made in the integer array� Finally� the arrays are
printed� Here is the output of the program�

faray��� � ��#����� iaray��� � �

faray��� � ��#����� iaray��� � �

faray��� � �������� iaray��� � ��

faray�#� � �������� iaray�#� � �

faray�%� � �������� iaray�%� � �

���� ARRAYS� POINTERS� POINTER ARITHMETIC ���

��
�� Array Names vs Pointer Variables

As we have seen� when we declare an array� a contiguous block of memory is allocated for the cells
of the array and a pointer cell �of the appropriate type� is also allocated and initialized to point
to the �rst cell of the array� This pointer cell is given the name of the array� When memory is
allocated for the array cells� the starting address is �xed� i�e� it cannot be changed during program
execution� Therefore� the value of the pointer cell should not be changed� To ensure that this
pointer is not changed� in C� array names may not be used as variables on the left of an assignment
statement� i�e� they may not be used as an Lvalue� Instead� if necessary� separate pointer variables
of the appropriate type may be declared and used as Lvalues� For example� we can use pointer
arithmetic and the dereference operator to initialize an array as follows�

�� Use of pointers to initialize an array ��

�include �stdio�h�

main��

� int i�

float X�MAX��

for �i � �� i � MAX� i!!�

��X ! i� � ���� �� same as X�i� ��

"

In the loop� ��X ! i� is the same as X�i�� Since X �the pointer cell� has a �xed value we cannot
use the increment operator or the assignment operator to change the value of X�

X � X ! �� �� ERROR ��

Here is an example of a common error which attempts to use an array as an Lvalue�

�� BUG� Attempt to use an array name as an Lvalue ��

�include �stdio�h�

main��

� int i�

float X�MAX��

for �i � �� i � MAX� i!!� �

�X � ����

X!!� �� BUG� X � X ! �� ��

"

"

In this example� X is �xed and cannot be used as an Lvalue� the compiler will generate an error
stating that an Lvalue is required for the !! operator� However� we can declare a pointer variable�

��� CHAPTER �� ARRAYS

which can point to the same type as the type of the array� and initialize it to the value of array
pointer� This pointer variable CAN be used as an Lvalue� so we can then rewrite the previous
array initialization loop as follows�

�� OK� A pointer variable is initialized to an array pointer and then

used as an Lvalue�

��

�include �stdio�h�

main��

� int i�

float �ptr� X�MAX��

ptr � X� �� ptr is a variable which can be assigned a value ��

for �i � �� i � MAX� i!!� �

�ptr � ���� �� �ptr accesses X�i� ��

ptr!!�

"

"

Observe that the pointer variable� ptr� is type float �� because the array is of type float� It is
initialized to the value of the �xed pointer� X �i�e� the initial value of ptr is set to the same as that
of X� namely� �X����� and may subsequently be modi�ed in the loop to traverse the array� The
�rst time through the loop� �ptr � X���� is set to zero and ptr is incremented by one so that it
points to the next element in the array� The process repeats and each element of the array is set
to
�
� This behavior is shown in Figure ���
� Observe that the �nal increment of ptr makes it
point to X�MAX�� however� no such element exists �recall� an array of size MAX has cells indexed
 to
MAX � ��� At the end of the for loop� the value of ptr is meaningless since it now points outside
the array� Unfortunately� C does not prevent a program from accessing objects outside an array
boundary� it merely increments the pointer value and accesses memory at the new address� The
results of accessing the array with the pointer� ptr at this point will be meaningless and possibly
disastrous� It is the responsibility of the programmer to make sure that the array boundaries are
not breached� The best way of ensuring that a program stays within array boundaries is to write
all loops that terminate when array limits are reached� When passing arrays in function calls�
always pass the array limit as an argument as well�

Here is a similar error in handling strings and pointers�

�� BUG� Common error in accessing strings ��

�include �stdio�h�

�define SIZE ���

main��

� char c� msg�SIZE��

while ��c � getchar��� � $�n$� �

�msg � c�

���� ARRAYS� POINTERS� POINTER ARITHMETIC ���

��

�
� �

�

�

�

� � �

� � �

�oat X�MAX�
X

ptr

�

�

Figure ���
� Pointer Variables and Arrays

msg!!� �� msg is fixed� it cannot be an Lvalue ��

"

�msg � $��$�

"

The array name� msg is a constant pointer� it cannot be used as an Lvalue� We can rewrite the
loop correctly to read a character string as�

�� OK� Correct use of pointers to access a string ��

�include �stdio�h�

�define SIZE ���

main��

� char c� �mp� msg�SIZE��

mp � msg�

while ��c � getchar��� � $�n$� �

�mp � c�

mp!!� �� mp is a variable� it can be an Lvalue ��

"

�mp � $��$�

"

��� CHAPTER �� ARRAYS

�

�

�

� � � � � �

� � �
h

e

l

l

o

n�

msg

mp

Figure ����� Pointer Variables and Strings

Observe in this case� mp is a character pointer since the array is a character array� The variable�
mp is initialized to the value of msg� The dereferenced pointer variable� �mp� then accesses the
elements of the array in sequence as mp is incremented �see Figure ������ The loop terminates
when a newline is read� and a terminating NULL is added to the string�

Remember� pointer variables must be initialized to point to valid objects� otherwise� fatal
errors will most likely occur� For example� if the pointer� mp� in the above code were not initialized
to the value of msg� a serious and probably fatal error will occur when the pointer is dereferenced
and an attempt is made to access the memory cell pointed to by mp� This is because the initial
value of mp would be some garbage value which may point to an invalid memory address causing
a fatal memory fault to occur� If the garbage value were not an invalid memory address� the loop
would write characters to an unknown memory address� possibly destroying other valid data�

As we�ve said� an array names cannot be used as an Lvalues� On the other hand� when a
function is used to access an array� the corresponding formal parameter is a pointer variable� This
pointer variable can be used as an Lvalue� Here is a function to print a string�

�� Function prints a string pointed to by mp� ��

void our�strprint�char �mp�

�

while ��mp� �

putchar��mp��

mp!!� �� mp is a variable� it can be an Lvalue ��

"

putchar�$�n$��

"

Here� mp is a pointer variable� which� when the function is called� we assume will be initialized to
point to some NULL terminated string� The expression� �mp� accesses the elements of the array� and
the loop continues as long as �mp is not NULL� Each time the loop is executed� a character� �mp�
is written� and mp is incremented to point to the next character in the array� When �mp accesses
the NULL� the loop terminates and a newline character is written�

��	� STRING ASSIGNMENT AND I
O ���

��� String Assignment and I	O

As we have seen� a character string in C is an array of characters with a terminating NULL character�
Access to a character string requires only a pointer to the character array containing the characters�
It is common to use the term� string� to loosely refer to either an array of characters holding the
string� or to a character pointer that may be used to access the string� it should be clear from
context which is meant�

When a character string constant is used in a program� the compiler automatically allocates
an array of characters� stores the string in the array� appends the NULL character� and replaces the
string constant by the value of a pointer to the string� Therefore� the value of a string constant is
the value of a pointer to the string� We can use string constants in expressions just as we can use
the names of arrays� Here is an example�

char �mp� msg�SIZE��

mp � �This is a message�n��

The compiler replaces the string constant by a pointer to a corresponding string� Since mp is a
character pointer variable� we can assign a value of a �xed string pointer to mp� If necessary we
can traverse and print the string using this pointer� On the other hand� since msg�� is declared
as a character array� we cannot make the following assignment�

msg � �This is a message�n�� �� ERROR ��

since we are attempting to modify a constant pointer� msg�

A string constant is just another string appropriately initialized and accessed by a pointer to it�
We will therefore make no distinctions between strings and string constants� they are both strings
referenced by string pointers� While strings and string constants are both strings� the contents of
string constants cannot be changed in ANSI C�

We have been using string constants as format strings for printf�� and in scanf��� which
expect their �rst argument to be a string pointer� i�e� a char pointer� The compiler has automat�
ically created an appropriate string and replaced the string by a string pointer� Instead of writing
a format string directly in a function call� we could pass a string pointer that points to a format
string� Here is an example�

char �mesg�

int n�

n � ��

mesg � �This is message number �d�n��

printf�mesg� n��

��
 CHAPTER �� ARRAYS

The string constant is stored by the compiler somewhere in memory as an array of characters with
an appended NULL character� A pointer to this character array is assigned to the character pointer
variable� mesg� The function printf�� then uses the pointer to retrieve the format string� and
print the string�

This is message number �

The functions� printf�� and scanf�� can be used for string input and output as well� Array
names or properly initialized pointers to strings must be passed as arguments in both cases� The
conversion speci�cation for strings is �s� For example� consider the task of reading strings and
writing them out� Here is an example program�

�� File� fcopy�c

This program reads strings from standard input using scanf�� and writes

them to standard output using printf���

��

�include �stdio�h�

�include �araydef�h�

main��

� char mesg�SIZE��

printf�����Strings� Formatted I�O����n�n���

printf��Type characters� EOF to quit�n���

while �scanf���s�� mesg� � EOF�

printf���s�n�� mesg��

"

Sample Session�

���Strings� Formatted I�O���

Type characters� EOF to quit

This is a test
This

is

a

test

D

The conversion speci�cation� �s indicates a string and the corresponding matching argument must
be a char pointer� When scanf�� reads a string it stores it at the location pointed to by mesg �
note we do not use �mesg since mesg is already a pointer to an array of characters� Then� printf��
prints the string pointed to by mesg� When scanf�� reads a string using �s� it behaves like it

���� ARRAY INITIALIZERS ���

does for numeric input� skipping over leading white space� and reading the string of characters
until a white space is reached� Thus� scanf�� can read only single words� storing the string of
characters read into an array pointed to by the argument� mesg and appending a NULL character
to mark the end of the string� On the other hand� printf�� prints the string pointed to by its
argument� mesg� printing the entire string �including any white space� until a NULL character is
reached� The sample session shows that each time scanf�� reads a string� only a single word is
read from the input line and then printed�

As we said� when scanf�� reads a string� the string argument must be a pointer that points to
an array where the input characters are to be stored� For example� here are correct and incorrect
ways of using scanf���

char � mp� � mptr� msg�SIZE��

scanf���s�� mp�� �� BUG ��

scanf���s�� msg�� �� OK ��

mptr � msg�

scanf���s�� mptr�� �� OK ��

The �rst scanf�� is incorrect because mp has not been initialized and� therefore� does not point
to an array where a string is to be stored� The other statements are correct� in each case� the
pointer points to an array�

��
 Array Initializers

ANSI C allows automatic array variables to be initialized in declarations by constant initializers
as we have seen we can do for scalar variables� These initializing expressions must be constant

�known at compile time� values� expressions with identi�ers or function calls may not be used in
the initializers� The initializers are speci�ed within braces and separated by commas� Here are
some declarations with constant initializers�

int ex���� � � ��� �#� �� ��� ��� %� "�

char word���� � � h� e� l� l� o� $��$ "�

Each constant initializer in the braces is assigned� in sequence� to an element of the array starting
with index
� If there are not enough initializers for the whole array� the remaining elements of
the array are initialized to zero� Thus� ex��� through ex�	� are assigned the values ��� ��� ��
��� ��� and ��� while ex��� through ex��� are initialized to zero� Similarly� word is initialized
to a string �hello�� String initializers may be written as string constants instead of character
constants within braces� for example�

char mesg�� � �This is a message��

char name���� � �John Doe��

��� CHAPTER �� ARRAYS

In the case of mesg��� enough memory is allocated to accommodate the string plus a terminating
NULL� and we do not need to specify the size of the array� The above string initializers are allowed
as a convenience� the compiler initializes the array at compile time� Remember� initializations
are not assignment statements� they are declarations that allocate and initialize memory� As with
other arrays� these array names cannot be used as Lvalues in assignment statements�

Here is a short program that shows the use of initializers�

�� File� init�c

Program shows use of initializers for arrays�

��

�include �stdio�h�

�define MAX ��

main��

� int i� ex�MAX� � � ��� �#� �� ��� ��� %� "�

char word�MAX� � �S� m� i� l� e� $��$"�

char mesg�� � �Message of the day is� ��

printf�����Array Declarations with Initializers����n�n���

printf���s�s�n�� mesg� word��

printf��Initialized Array��n���

for �i� �� i � MAX� i!!�

printf���d�n�� ex�i���

"

Sample Output�

���Array Declarations with Constant Initializers���

Message of the day is� Smile

��

�#

�

��

��

%�

�

�

�

�

The �rst printf�� statement uses �s to print each of the two strings accessed by pointers� mesg
and word� Finally� the loop prints the array� ex� one element per line�

���� ARRAYS FOR DATABASES ���

�

�

�

�

�

�

�

�

�

�
id hrs rate regular overtime

index

index i

Figure ����� Data Record Spread Over Several Arrays

��� Arrays for Databases

We now consider our payroll task that reads input data and calculates pay as before� but the
program prints a table of computed pay for all the id�s� The algorithm uses arrays to store the
data� but is otherwise very similar to our earlier programs� get data� calculate pay� and print
results� We will use functions to perform these subtasks� Here are the prototypes�

�� File� payutil�h ��

int getdata�int id��� float hrs��� float rate��� int lim��

void calcpay�float hrs��� float rate��� float reg��� float over��� int n��

void printdata�int id��� float hrs��� float rate���

float reg��� float over��� int n��

The function� getdata�� gets the data into the appropriate arrays for id�s� hours worked� and
rate of pay� returning the number of id�s entered by the user� While the arrays id��� hrs��� and
rate�� are individual arrays� we make sure that the same value of the array index accesses the
data for a given id� For example� id�i� accesses an id number and hrs�i� and rate�i� access
hours worked and rate of pay for that id number� In other words� an input data record for each id
number resides at the same index in these arrays�oWe can think of this data structure as a table�
where the columns are the arrays holding di�erent pieces of information� and the rows are the
data for an individual id� as shown in Figure �����

Next� calcpay�� calculates and stores regular and overtime pay for each id in arrays� regpay��
and overpay�� �columns�� at the same array index as the input data record� Thus� the entire pay�
roll data record for each id number is at a unique index in each of the arrays� Finally� printdata��

��� CHAPTER �� ARRAYS

�� File� paytab�c

Other Source Files� payutil�c

Header FIles� paydef�h� payutil�h

Program calculates and stores payroll data for a number of id$s� Gets

data� calculates pay� and prints data for all id$s�

��

�include �stdio�h�

�include �paydef�h�

�include �payutil�h�

�define MAX ��

main��

� int n� id�MAX��

float hrs�MAX�� rate�MAX�� regpay�MAX�� overpay�MAX��

printf�����Payroll Program����n�n���

n � getdata�id� hrs� rate� MAX��

calcpay�hrs� rate� regpay� overpay� n��

printdata�id� hrs� rate� regpay� overpay� n��

"

Figure ����� Code for paytab�c

prints each payroll record� i�e� the input data as well as the calculated regular� overtime� and total
pay� We will write getdata��� printdata��� and calcpay�� in the �le� payutil�c� The proto�
types shown above for these functions are in the �le� payutil�h� This header �le is included in
the program �le paytab�c� where main�� will reside �see Figure ������ We also include the header
�le� paydef�h which de�nes the symbolic constants� REG LIMIT and OT FACTOR��

�� paydef�h ��

�define REG�LIMIT %�

�define OT�FACTOR ��	

The program calls getdata�� which reads data into the appropriate arrays and stores the
returned value �the number of id�s� into n� It then calls on calcpay�� to calculate the pay for n
people� �lling in the regpay�� and overpay�� arrays� and calls printdata�� to print the input
data and the results for n people� The code for these functions is shown in Figure �����

In the function� getdata��� scanf�� is used to read data for the itemsa� using n to count and
index the data items in the arrays� We use pointer arithmetic to pass the necessary arguments to
scanf��� For example� to read data into id�n�� we must pass its address �id�n�� Instead� we
pass id ! n which is identical to �id�n�� The function� getdata��� reads data for as many id�s
as possible� returning either when there is no more data �a zero id value� or the arrays are full �n
reaches the limit� lim passed in�� If the array limit is reached� an appropriate message is printed

���� ARRAYS FOR DATABASES ���

�� File� payutil�c ��

�include �stdio�h�

�include �paydef�h�

�include �payutil�h�

�� Gets data for all valid id$s and returns the number of id$s ��

int getdata�int id��� float hrs��� float rate��� int lim�

� int n � ��

while �n � lim� �

printf��ID �zero to quit�� ���

scanf���d�� id ! n�� �� id ! n is same as �id�n� ��

if �id�n� �� �� return n�

printf��Hours Worked� ���

scanf���f�� hrs ! n�� �� hrs ! n is same as �hrs�n� ��

printf��Rate of Pay� ���

scanf���f�� rate ! n�� �� rate ! n is same as �rate�n� ��

n!!�

"

printf��No more space for data � processing data�n���

return n�

"

�� Calculates regular and overtime pay for each id ��

void calcpay�float hrs��� float rate��� float reg��� float over��� int n�

� int i�

for �i � �� i � n� i!!� �

if �hrs�i� �� REG�LIMIT� �

reg�i� � hrs�i� � rate�i��

over�i� � ��

"

else �

reg�i� � REG�LIMIT � rate�i��

over�i� � �hrs�i� � REG�LIMIT� � OT�FACTOR � rate�i��

"

"

"

�� Prints a table of payroll data for all id$s� ��

void printdata�int id��� float hrs��� float rate���

float reg��� float over��� int n�

� int i�

printf�����PAYROLL� FINAL REPORT����n�n���

printf���%s�t�	s�t�	s�t��s�t��s�t��s�n�� �ID�� �HRS�� �RATE��

�REG�� �OVER�� �TOT���

for �i � �� i � n� i!!�

printf���%d�t�	��f�t�	��f�t����f�t����f�t����f�n��

id�i�� hrs�i�� rate�i�� reg�i�� over�i��

reg�i� ! over�i���

"

Figure ����� Code for payutil�c

��� CHAPTER �� ARRAYS

and the input is terminated� The function returns the number of id�s placed in the arrays� The
other functions in the program are straight forward� each index accesses the data record for the
id at that index�

As written� getdata�� terminates input of data when an invalid id �id �� �� is entered� An
alternative might be to read a data item in a temporary variable �rst� examine it for validity if
desired� and then assign it to an array element� For example�

scanf���d�� �x��

if �x � ��

id�n� � x�

else

return n�

Here is a sample session for the program� paytab�c compiled and linked with payutil�c�

Sample Session�

���Payroll Program���

ID �zero to quit�� �
Hours Worked� �	
Rate of Pay�
�
ID �zero to quit��
�
Hours Worked� ��
Rate of Pay�
�
�	
ID �zero to quit�� �
Hours Worked� �	
Rate of Pay� �
ID �zero to quit�� �
Hours Worked� �	
Rate of Pay�
	
ID �zero to quit�� 	
���PAYROLL� FINAL REPORT���

ID HRS RATE REG OVER TOT

 	���� �%��� 	����� ������ ������

�� %	��� ���	� 	����� �#��	 	�#��	

� ����� 	��� ������ ���� ������

	 %���� ����� %����� ���� %�����

���� COMMON ERRORS ���

��� Common Errors

�� Use of an array name as an Lvalue� An array name has a �xed value of the address where
the array is allocated� It is NOT a variable� it cannot be used as an Lvalue and assigned a
new value� Here are some example�

�a� int x�����

while ��x� �

���

x!!� �� ERROR ��

"

x cannot be used as an Lvalue and assigned new values�

�b� char msg�
���

���

while ��msg� �

���

msg!!� �� ERROR ��

"

msg cannot be used as an Lvalue�

�c� char msg�
���

msg � �This is a message�� �� ERROR ��

msg cannot be an Lvalue� The right hand side is not a problem� Value of a string
constant is a pointer to an array automatically allocated by the compiler�

�d� char msg�
�� � �This is a message��

�� OK� array initialized to the string when memory is allocated ��

A string constant initializer is correct� When memory is allocated for the array� it is
initialized to the string constant speci�ed�

�� Failure to de�ne an array� De�nition of an array is required to allocate memory for storage
of an array of objects� A pointer type allocates memory for a pointer variable� NOT for
an array of objects� Suppose� read str�� reads a string and stores it where its argument
points�

int �pmsg� �� memory allocated for a pointer variable ��

read�str�pmsg�� �� ERROR� memory not allocated for a string ��

No memory is allocated for a string� i�e� an array of characters� The variable� pmsg points to
some garbage address� read str�� will attempt to store the string at that garbage address�
The address may be invalid� in which case there will be a memory fault� a fatal error�
Allocate memory for a string with an array declaration�

��� CHAPTER �� ARRAYS

int str�MAX��

read�str�str��

�� Array pointer not passed to a called function� If a called function is to store values in an
array for later use by the calling function� it should be passed a pointer to an array de�ned
in the calling function� Here is a program with an error�

�include �stdio�h�

main��

� char � p� s�
���

� get�word�char � s��

p � get�word�s�� �� ERROR� returned pointer points to freed memory ��

puts�p�� �� Prints garbage ��

"

char � get�word�char �str�

� char wd�#��� �� memory allocated for array wd�� ��

int i � ��

while ��str �� $ $� �� skip leading blanks ��

�

while ��str � $ $� �� while not a delimiter ��

wd�i!!� � �str!!� �� copy char into array wd�� ��

wd�i� � $��$� �� append a NULL to string in wd�� ��

return wd� �� return pointer to wd�� ��

" �� memory for array wd�� is freed ��

The function� get word�� copies a word from a string� s� into an automatic array� wd�� for
which memory is allocated in get word��� When get word�� returns� a pointer� wd� to the
calling function� the memory allocated for wd�� is freed for other uses� since it was allocated
only for get word��� The data stored in wd�� may be overwritten with other data� In the
calling function� p is assigned an address value which points to freed memory� The function�
puts��� will print a garbage sequence of characters pointed to by p� At times� the memory
may not be reused right away and it will print the correct string� At other times� it will
print out garbage�

�� Errors in passing array arguments� Only array names� i�e�� pointers to arrays� should be
passed as arguments� The following are all in ERROR�

func�s����

func�s�
����

func��s��

Pointers to arrays� i�e� array names by themselves� should be passed as arguments in function
calls� Arguments in the above function calls are not pointers� The �rst one is meaningless
in an expression� the second attempts to pass an element at index �
� the third passes a
dereferenced pointer� not the pointer to the array�

��
� SUMMARY ���

�� Errors in declaring formal parameters� Formal parameters referencing arrays in function
de�nitions should be speci�ed to be pointers� not objects of a base type� Consider a function�
init��� that initializes elements of an integer array to some values� The following is an error�

init�int aray�

�

���

"

The parameter declared is an integer not a pointer to an integer� It should be either of the
following�

init�int � aray�

OR

init�int aray���

In either of the above cases� memory for an integer pointer is allocated� NOT for a new array
of integers�

�� Misinterpreting formal parameter declarations� Even if an array size is speci�ed in a formal
parameter� memory is not allocated for an array but for a pointer�

init�int aray�����

The above declares aray as an integer pointer�

�� Pointers are not initialized�

int x� � px�

x � ���

printf���px � �d�n�� �px��

Since value of px is garbage� there will be a fatal memory fault when an attempt is made to
evaluate �px�

��� Summary

In this Chapter� we have introduced one form of compound data type� the array� An array is a
block of a number of data items all of the same type allocated in contiguous memory cells� We
have seen that� in C� an array may be declared using the syntax�

�type�speci�er��identi�er���size���

��
 CHAPTER �� ARRAYS

specifying the type of the data items� and the number of elements to be allocated in the array�
As we saw� such a declaration in a function causes �size� data items of type �type�speci�er� to
be allocated in contiguous memory� AND a pointer cell to be allocated of type �type�speci�er��
�pointer to �type�speci�er��� given the name� �identi�er�� and initialized to point to the �rst cell
of the array� More speci�cally� for a declaration like�

int data������

allocates �

 int cells� and an int � cell named data which is initialized to point to the block of
integers�

We saw that the data items in an array can be accessed using an index� i�e� the number of
the item in the block� Numbering of data items begins with index
� to the size � �� We use the
index of an element in a subscripting expression with syntax�

�identi�er���expression��

where �identi�er� is the name of the array� and the �expression� in the square brackets ���� is
evaluated to the index value� So� for our previous example� the statement�

data��� � 	�

sets the integer value� �� into the �rst cell of the array� data� While�

data�i� � data�i����

would copy the value from the element with index i � � to its immediate successor in the array�

The data types of the elements of an array may be any scalar data type� int� float� or char�
�We will see other types for array elements in later chapters�� We have cautioned that� in C� no
checking is done on the subscripting expressions to ensure that the index is withing the block
of data allocated �i�e� that the subscript is in bounds�� It is the programmers responsibility to
ensure the subscript is in bounds� We have seen two ways of doing this� to keep the value of the
limit or the extent of data in the array in a separate integer variable and perform the necessary
comparisons� or to mark the last item in the array with a special value� The most common use of
this later method is in the case of an array of characters �called a string�� where the end of the
string is indicated with the special character� NULL �whose value is
��

We have also discussed the equivalence of subscripting expressions and pointer arithmetic�
i�e� that a subscripting expression� data�i�� is equivalent to �and treated by the compiler as� the
pointer expression� ��data ! i�� Remember� the name of the array is a pointer variable� pointing
to the �rst element of the array� These two forms of array access may be used interchangebly
in programs� as �ts the logic of the operation being performed� It is the semantics of pointer
arithmetic that will compute the address of the indexed element correctly�

��
� SUMMARY ���

In addition� we have seen that passing arrays as parameters to functions is done by passing a
pointer to the array �the array name�� The cells of data are allocated in the calling function� and
the called function can access them indirectly using either a pointer expression or a subscripting
expression� Remember� a parameter like�

int func� int a�� �

�even if it has a �size� in the brackets� does NOT allocate integer cells for the array� it merely
allocates an int � cell which will be given a pointer to an array in the function call� Such a
parameter is exactly equivalent to�

int func� int �a�

We have discussed the fact that the pointer cell� referenced using the name of the array� is
a constant pointer cell� i�e� it may not be changed by the program �it may not be used as an
Lvalue�� However� additional pointer cells of the appropriate type may be declared and initialized
to point to the array �by the programmer� and can then be used to traverse the array with pointer
arithmetic �such as the !! or �� operators��

We have shown how arrays can be initialized in the declaration �a bracketed� comma separated
list of values� or� for strings� a string constant�� We have seen the semantics of string assignment
and how strings can be read and printed by scanf�� and printf�� using the �s conversion
speci�er� Remember� for scanf��� �s behaves like the numeric conversion speci�ers� it skips
leading white space and terminates the string �with a NULL� at the �rst following white space
character�

Finally� we have shown an example of using arrays in a data base type applications� where
arrays of di�erent types were used to hold a collection of payroll records for individuals� In that
example� the elements at a speci�c index in all of the arrays corresponded to one particular data
record�

The array is an important and powerful data structure in any programming language� Once
you master the use of arrays in C� the scale and scope of your programming abilities expand
tremendously to include just about any application�

��� CHAPTER �� ARRAYS

��
 Exercises

With the following declaration�

int �p� x�����

char �t� s������

Explain each of the following expressions� If there is an error� explain why it is an error�

�� �a� x

�b� x ! i

�c� ��x ! i�

�d� x!!�

�� �a� p � x�

�b� �p

�c� p!!�

�d� p!!�

�e� p���

�f� ��p�

�� �a� p � x ! 	�

�b� �p�

�c� ��p�

�d� p��

�� scanf���s�� s��

Input� Hello� Hello�

�� printf���s�n�� s��

�� scanf���s�� t��

t � s�

scanf���s�� t��

Check the following problems� �nd and correct errors� if any� What will be the output in
each case�

���� EXERCISES ���

�� main��
� int i� x���� � � �� �� #� %"�

for �i � �� i � ��� i!!� �

printf���d�n�� �x��

x!!�

"

"

�� main��
� int i� �ptr� x���� � � �� �� #� %"�

for �i � �� i � ��� i!!� �

printf���d�n�� �ptr��

ptr!!�

"

"

�� main��
� int i� x���� � � �� �� #� %"�

for �i � �� i � ��� i!!�

printf���d�n�� �x ! i���

"

�
� main��

� int i� x���� � � �� �� #� %"�

for �i � �� i � ��� i!!�

printf���d�n�� ��x ! i���

"

��� main��

� int i� �ptr� x���� � ��� �� #� %"�

ptr � x�

for �i � �� i � ��� i!!� �

printf���d�n�� �ptr��

ptr!!�

"

"

��� main��

� int i� �ptr� x���� � ��� �� #� %"�

ptr � x�

for �i � �� i � ��� i!!� �

printf���d�n�� ptr��

��� CHAPTER �� ARRAYS

ptr!!�

"

"

��� main��

� char x�����

x � �Hawaii�

printf���s�n�� x��

"

��� main��

� char �ptr�

ptr � �Hawaii��

printf���s�n�� ptr��

"

��� main��

� char �ptr� x���� � �Hawaii��

for �i � �� i � ��� i!!�

printf���d �d �d�n�� x ! i� ��x ! i�� x�i���

"

��� main��

� char x�����

scanf���s�� x��

printf���s�n�� x��

"

The Input is�

Good Day to You

��� main��

� char �ptr�

scanf���s�� ptr��

printf���s�n�� ptr��

"

The Input is�

Good Day to You

��� Here is the data stored in an array

���� EXERCISES ���

char s������

Hawaii��Manoa��

What will be printed out by the following loop

i � ��

while �s�i�� �

putchar�s�i���

i!!�

"

��� CHAPTER �� ARRAYS

���� Problems

�� Write a program that uses the sizeof operator to print the size of an array declared in the
program� Use the sizeof operator on the name of the array�

�� Write a function that prints� using dereferenced pointers� the elements of an array of type
�oat�

�� Write a function that checks if a given integer item is in a list� Traverse the array and check
each element of the list� If an element is found return True� if the array is exhausted� return
False�

�� Write a function that takes an array of integers and returns the index where the maximum
value is found�

�� Write a function that takes an array and �nds the index of the maximumand of the minimum�

Use arrays to house sets of integers� A set is a list of items� Each item of a list is a member
of a list and appears once and only once in a list� Write the following set functions�

�� Test if a number is a member of a set� is the number present in the set

�� Union of two sets A and B� the union is a set that contains members of each of the two sets
A and B�

�� Intersection of two sets A and B� the intersection contains only those members that are
members of both the sets A and B�

�� Di�erence of two sets A and B� The new set contains elements that are members of A that
are not also members of B�

�
� Write a function to read a string from the standard input� Read characters until a newline
is reached� discard the newline� and append a NULL� Use array indexing�

��� Write a function to read a string from the standard input� Read characters until a newline
is reached� discard the newline� and append a NULL� Use pointers�

��� Write a function to write a string to the standard output� Write characters until a NULL is
reached� discard the NULL� and append a newline� Use pointers�

��� Write a function to change characters in a string� change upper case to lower case and vice
versa� Use array indexing�

��� Write a function to change characters in a string� change upper case to lower case and vice
versa� Use pointers�

��� Write a function that counts and returns the number of characters in a string� Do not count
the terminating NULL� Use array indexing�

��� Write a function that counts and returns the number of characters in a string� Do not count
the terminating NULL� Use array indexing�

����� PROBLEMS ���

��� Write a function that removes the last character in a string� Use array indexing to reach the
last element and replace it with a NULL�

��� Write a function that removes the last character in a string� Use pointers to traverse the
array�

��� Repeat problems �� and ��� but use the function of problems �� or ���

��� CHAPTER �� ARRAYS

