Chapter 7

Arrays

A programmer is concerned with developing and implementing algorithms for a variety of tasks.
As tasks become more complex, algorithm development is facilitated by structuring or organizing
data in specialized ways. There is no best data structure for all tasks; suitable data structures must
be selected for the specific task. Some data structures are provided by programming languages;
others must be derived by the programmer from available data types and structures.

So far we have used integer, floating point and character data types as well as pointers to
them. These data types are called base or scalar data types. Such base data types may be
used to derive data structures which are organized groupings of instances of these types. The C
language provides some widely used compound or derived data types together with mechanisms
which allow the programmer to define variables of these types and access the data stored within
them.

The first such type we will discuss is called an array. Many tasks require storing and processing
a list of data items. For example, we may need to store a list of exam scores and to process it in
numerous ways: find the maximum and minimum, average the scores, sort the scores in descending
order, search for a specific score, etc. Data items in simple lists are usually of the same scalar
type; for example a list of exam scores consists of all integer type items. We naturally think of a
list as a data structure that should be referenced as a unit. C provides a derived data type that
stores such a list of objects where each object is of the same data type — the array.

In this chapter, we will discuss arrays; how they are declared and data is accessed in an
array. We will discuss the relationship between arrays and pointers and how arrays are passed
as arguments in function calls. We will present several example programs using arrays, including
a revision of our “payroll” task from previous chapters. One important use of arrays is to hold
strings of characters. We will introduce strings in this chapter and show how they are stored
in C; however, since strings are important in handling non-numeric data, we will discuss string
processing at length in Chapter 10.

293

294 CHAPTER 7. ARRAYS

7.1 A Compound Data Type — array

As described above, an array is a compound data type which allows a collection of data of the
same type to be grouped into a single object. As with any data type, to understand how to use an
array, one must know how such a structure can be declared, how data may be stored and accessed
in the structure, and what operations may be performed using this new type.

7.1.1 Declaring Arrays

Let us consider the task of reading and printing a list of exam scores.
LISTO0: Read and store a list of exam scores and then print it.

Since we are required to store the entire list of scores before printing it, we will use an array
hold the data. Successive elements of the list will be stored in successive elements of the array.
We will use a counter to indicate the next available position in the array. Such a counter is called
an index into the array. Here is an algorithm for our task:

initialize the index to the beginning of the array
while there are more data items
read a score and store in array at the current index
increment index
set another counter, count = index - the number of items in the array
traverse the array: for each index starting at the beginning to count
print the array element at index

The algorithm reads exam scores and stores them in successive elements of an array. Once the list
is stored in an array, the algorithm traverses the array, i.e. accesses successive elements, and prints
them. A count of items read in is kept and the traversal continues until that count is reached.

We can implement the above algorithm in a C program as shown in Figure 7.1. Before ex-
plaining this code, here is a sample session generated by executing this program:

[,1st of Exam Scores

Type scores, EOF to quit
67
75
82
69
"D

**kkExam Scoreskxkxk

7.1. A COMPOUND DATA TYPE — ARRAY 295

/* File: scores.c
This program reads a list of integer exam scores and prints them out.
*/
#include <stdio.h>
#define MAX 100

main()
{ int exam_scores[MAX], index, n, count;

printf ("***List of Exam Scores***\n\n");
printf ("Type scores, EOF to quit\n");

/* read scores and store them in an array */

index = 0;

while ((index < MAX) && (scanf("%d", &n) '= EOF))
exam_scores[index++] = n;

count = index;

/* print scores from the array */

printf ("\n***Exam Scores***\n\n");

for (index = 0; index < count; index++)
printf ("/4d\n", exam_scores[index]);

Figure 7.1: Code for scores.c

296 CHAPTER 7. ARRAYS

int exam scores[MAX]

index subscripted expression
0 exam scores|0]
1 exam scores|1]
2 exam_scores|2]
i exam_scores]i]
MAX -2 exam_scores[MAX-2]
MAX -1 exam_scores[MAX-1]

Figure 7.2: An Array of size MAX

67
75
82
69

Referring to the code in Figure 7.1, the program first declares an array, exam_scores[MAX],
of type integer. This declaration allocates a contiguous block of memory for objects of integer
type as shown in Figure 7.2. The macro, MAX, in square brackets gives the size of the array,
i.e. the number of elements this compound data structure is to contain. The name of the array,
exam_scores, refers to the entire collection of MAX integer cells. Individual objects in the array may
be accessed by specifying the name of the array and the index, or element number, of the object; a
process called indexing. In C, the elements in the array are numbered from 0 to MAX - 1. So, the
elements of the array are referred to as exam_scores[0], exam_scores[1], ..., exam_scores[MAX
- 1], where the index of each element is placed in square brackets. These index specifiers are
sometimes called subsctipts, analogous to the mathematical expression exam_scores;a. These
indexed or subscripted array expressions are the names of each object in the array and may be
used just like any other variable name.

In the code, the while loop reads a score into the variable, n, places it in the array by assigning
it to exam_scores[index], and increments index. The loop is terminated either when index
reaches MAX (indicating a full array) or when scanf () returns EOF, indicating the end of the data.

7.1. A COMPOUND DATA TYPE — ARRAY 297

We could have also read each data item directly into exam_scores[index] by writing scanf () as
follows:

scanf ("%d", &exam_scores[index])

We choose to separate reading an item and storing it in the array because the use of the increment
operator, ++, for index is clearer if reading and storing of data items are separated.

Once the data items are read and stored in the array, a count of items read is stored in the
variable count. The list is then printed using a for loop. The array is traversed from element 0
to element count - 1, printing each element in turn.

From the above example, we have seen how we can declare a variable to be of the compound
data type, array, how data can be stored in the elements of the array, and subsequently accessed.
More formally, the syntax for an array declaration is:

<type-specifier><identifier>[<size>];

where the <type-specifier> may be any scalar or derived data type; and the <size> must evaluate,
at compile time, to an unsigned integer. Such a declaration allocates a contiguous block of memory
for objects of the specified type. The data type for each object in the block is specified by the
<type-specifier>, and the number of objects in the block is given by —sf <size> as seen in Figure
7.2. As stated above, the index values for all arrays in C must start with 0 and end with the
highest index, which is one less than the size of the array. The subscripting expression with the
syntax:

<identifier>[<expression>]

is the name of one element object and may be used like any other variable name. The subscript,
<expression> must evaluate, at run time, to an integer. Examples include:

int a[10];
float b[20];
char s[100];
int 1 = 0;

al3] = 13;
al5] = 8 * a[3];
b[6] = 10.0;

printf("The value of b[6] is %f\n", b[6]);
scanf ("%c", &s[7]);
cli] = cli+1];

Through the remainder of this chapter, we will use the following symbolic constants for many
of our examples:

298 CHAPTER 7. ARRAYS

/* File: araydef.h */
#define MAX 20
#define SIZE 100

In programming with arrays, we frequently need to initialize the elements. Here is a loop that
traverses an array and initializes the array elements to zero:

int i, ex[MAX];

for (1 = 0; i < MAX; i++)
ex[i] = 0;

The loop assigns zero to ex[i] until i becomes MAX, at which point it terminates and the array
elements are all initialized to zero. One precaution to programmers using arrays is that C does not
check if the index used as a subscript is within the size of the declared array, leaving such checks
as the programmer’s responsibility. Failure to do so can, and probably will result in catastrophe.

7.1.2 Character Strings as Arrays

Our next task is to store and print non-numeric text data, i.e. a sequence of characters which are
called strings. A string is an list (or string) of characters stored contiguously with a marker to
indicate the end of the string. Let us consider the task:

STRINGO: Read and store a string of characters and print it out.

Since the characters of a string are stored contiguously, we can easily implement a string
by using an array of characters if we keep track of the number of elements stored in the array.
However, common operations on strings include breaking them up into parts (called substrings),
joining them together to create new strings, replacing parts of them with other strings, etc. There
must be some way of detecting the size of a current valid string stored in an array of characters.

In C, a string of characters is stored in successive elements of a character array and terminated
by the NULL character. For example, the string "Hello" is stored in a character array, msgl], as
follows:

char msg[SIZE];

msgl[0] = "H’;
msgl1] = ’e’;
msgl2] = ’17;
msgl[3] = ’17;
msgl4] = 0’

msg[5] = ’\0’;

7.1. A COMPOUND DATA TYPE — ARRAY 299

0 1 2 3 4 5 index
7h7 767 717 717 707 7\07

Y

Figure 7.3: A String Stored in Memory

The NULL character is written using the escape sequence "\0’. The ASCII value of NULL is 0,
and NULL is defined as a macro to be 0 in stdio.h; so programs can use the symbol, NULL, in
expressions if the header file is included. The remaining elements in the array after the NULL may
have any garbage values. When the string is retrieved, it will be retrieved starting at index 0
and succeeding characters are obtained by incrementing the index until the first NULL character is
reached signaling the end of the string. Figure 7.3 shows a string as it is stored in memory.

Given this implementation of strings in C, the algorithm to implement our task is now easily
written. We will assume that a string input is a sequence of characters terminated by a newline
character. (The newline character is not part of the string). Here is the algorithm:

initialize index to zero
while not a newline character
read and store a character in the array at the next index
increment the index value
terminate the string of characters in the array with a NULL char.
initialize index to zero
traverse the array until a NULL character is reached
print the array character at index
increment the index value

The program implementation has:

e a loop to read string characters until a newline is reached;
e a statement to terminate the string with a NULL;

e and a loop to print out the string.

The code is shown in Figure 7.4 and a sample session form the program is shown below.

Sample Session:

xCharacter Strings

Type characters terminated by a RETURN or ENTER

300 CHAPTER 7. ARRAYS

/* File: string.c
This program reads characters until a newline, stores them in an
array, and terminates the string with a NULL character. It then prints
out the string.

*/

#include <stdio.h>
#include "araydef.h"

main()
{ char msg[SIZE], ch;
int 1 = 0;

printf ("***Character Strings*+**\n\n") ;
printf ("Type characters terminated by a RETURN or ENTER\n");

while ((ch = getchar()) '= ’\n’)
msgli++] = ch;

msgli] = *\0’;
i=0;
while (msgli] '= °\0’)

putchar (msg[i++]);
printf("\n");

Figure 7.4: Code for string.c

7.1. A COMPOUND DATA TYPE — ARRAY 301

Hello
Hello

The first while loop reads a character into ch and checks if it is a newline, which discarded
and the loop terminated. Otherwise, the character is stored in msgl[i] and the array index, i,
incremented. When the loop terminates, a NULL character is appended to the string of characters.
In this program, we have assumed that the size of msg[] is large enough to store the string. Since
a line on a terminal is 80 characters wide and since we have defined SIZE to be 100, this seems a
safe assumption.

The next while loop in the program traverses the string and prints each character until a NULL
character is reached. Note, we do not need to keep a count of the number of characters stored in
the array in this program since the first NULL character encountered indicates the end of the string.
In our program, when the first NULL is reached we terminate the string output with a newline.

The assignment expression in the above program:

msgl[i] = *\0’;

can also be written as:

msgli] = NULL;

or:

msgli] = 0;

In the first case, the character whose ASCII value is 0 is assigned to msg[i]; where in the other
cases, a zero value is assigned to msg[i]. The above assignment expressions are identical. The
first expression makes it clear that a null character is assigned to msgl[il, but the second uses a
symbolic constant which is easier to read and understand.

To accommodate the terminating NULL character, the size of an array that houses a string must
be at least one greater than the expected maximum size of string. Since different strings may be
stored in an array at different times, the first NULL character in the array delimits a valid strin.
The importance of the NULL character to signal the end of a valid string is obvious. If there were
no NULL character inserted after the valid string, the loop traversal would continue to print values
interpreted as characters, possibly beyond the array boundary until it fortuitously found a NULL
(0) character.

The second while loop may also be written:

while (msg[i] '= NULL)
putchar (msgl[i++]);

302 CHAPTER 7. ARRAYS

and the while condition further simplified as:

while (msgli])
putchar(msgli++]);

If msgl[i] is any character with a non-zero ASCII value, the while expression evaluates to True.
If msgl[i] is the NULL character, its value is zero and thus False. The last form of the while
condition is the more common usage. While we have used the increment operator in the putchar()
argument, it may also be used separately for clarity:

while (msgli]) {
putchar(msglil);
i++:

b

It is possible for a string to be empty; that is, a string may have no characters in it. An empty
string is a character array with the NULL character in the zeroth index position, msg[0].

7.2 Passing Arrays to Functions

We have now seen two examples of the use of arrays — to hold numeric data such as test scores,
and to hold character strings. We have also seen two methods for determining how many cells
of an array hold useful information — storing a count in a separate variable, and marking the
end of the data with a special character. In both cases, the details of array processing can easily
obscure the actual logic of a program — processing a set of scores or a character string. It is often
best to treat an array as an abstract data type with a set of allowed operations on the array which
are performed by functional modules. Let us return to our exam score example to read and store
scores in an array and then print them, except that we now wish to use functions to read and
print the array.

LIST1: Read an array and print a list of scores using functional modules.

The algorithm is very similar to our previous task, except that the details of reading and
printing the array is hidden by functions. The function, read_intaray(), reads scores and stores
them, returning the number of scores read. The function, print_intaray(), prints the contents
of the array. The refined algorithm for main() can be written as:

print title, etc.
n = read_intaray(exam_scores, MAX);
print_intaray(exam_scores, n);

Notice we have passed an array, exam_scores, and a constant, MAX (specifying the maximum size
of the proposed list), to read_intarray() and expect it to return the number of scores placed

7.2. PASSING ARRAYS TO FUNCTIONS 303

in the array. Similarly, when we print the array using print_intarray, we give it the array
to be printed and a count of elements it contains. We saw in Chapter 6 that in order for a
called function to access objects in the calling function (such as to store elements in an array)
we must use indirect access, i.e. pointers. So, read_intaray() must indirectly access the array,
exam_scores, in main(). One unique feature of C is that array access is always indirect; thus
making it particularly easy for a called function to indirectly access elements of an array and store
or retrieve values. As we will see in later sections, array access by index value is interpreted as an
indirect access, so we may simply use array indexing as indirect access.

We are now ready to implement the algorithm for main() using functions to read data into
the array and to print the array. The code is shown in Figure 7.5. The function calls in main ()
pass the name of the array, exam_scores, as an argument because the name of an array in an
expression evaluates to a pointer to the array. In other words, the expression, exam_scores, is a
pointer to (the first element of) the array, exam_scores[]. Its type is, therefore, int *, and a
called function uses this pointer (passed as an argument) to indirectly access the elements of the
array. As seen in the Figure, for both functions, the headers and the prototypes show the first
formal parameter as an integer array without specifying the size. In C, this syntax is interpreted
as a pointer variable; so scores is declared aa an int * variable. We will soon discuss how arrays
are accessed in C; for now, we will assume that these pointers may be used to indirectly access
the arrays.

The second formal parameter in both functions is 1im which specifies the maximum number
of items. For read_intaray(), this may be considered the maximum number of scores that can
be read so that it does not read more items than the size of the array allows (MAX). The function
returns the actual number of items read which is saved in the variable, n, in main(). For the
function, print_intaray(), lim represents the fact that it must not print more than n items.
Again, since arrays in C are accessed indirectly, these functions are able to access the array which
is defined and allocated in main(). A sample session for this implementation of the task would be
identical to the one shown earlier.

Similarly, we can modify the program, string.c, to use functions to read and print strings.
The task and the algorithm are the same as defined for STRINGO in the last section, except
that the program is terminated when an empty string is read. The code is shown in Figure 7.6.
The driver calls read_str() and print_str() repeatedly until an empty string is read (detected
when s[0] is zero, i.e. NULL). The argument passed to read_str() and print_str() is str, a
pointer to (the first element of) a character array, i.e. a char *. The function, read_str(), reads
characters until a newline is read and indirectly stores the characters into the string, s. The
function, print_str(), prints characters from the string, s until NULL is reached and terminates
the output with a newline. Notice we have declared the formal parameter, s as a char *, rather
than as an array: char s[]. As we will see in the next section, C treats the two declarations
exactly the same.

304

/* File: scores2.c
This program uses functions to read scores into an
the scores.

*/

#include <stdio.h>

#define MAX 10

int read_intaray(int scores[], int lim);
print_intaray(int scores[], int lim);
main()

{ int n, exam_scores[MAX];

printf ("***List of Exam Scores***\n\n");
n = read_intaray(exam_scores, MAX);
print_intaray(exam_scores, n);

/* Function reads scores in an array. */
int read_intaray(int scores[], int lim)
{ int n, count = 0;

printf ("Type scores, EOF to quit\n");

while ((count < 1lim) && (scanf("%d", &n) '= EOF)) {
scores[count] = n;
count++;

b

return count;

/* Function prints lim elements in the array scores. */
void print_intaray(int scores[], int lim)
{ int 1i;

printf ("\n***Exam Scores***\n\n");

for (1 = 0; 1 < lim; i++)
printf ("%d\n", scores[i]);

Figure 7.5: Code fore scores.c

CHAPTER 7. ARRAYS

array and to print

7.2. PASSING ARRAYS TO FUNCTIONS 305

/* File: string2.c
This program reads and writes strings until an empty string is
read. It uses functions to read and print strings to standard
files.

*/

#include <stdio.h>

#define SIZE 100

void print_str(char s[]);

void read_str(char s[]);

main()
{ char str[SIZE];

do {
read_str(str);
print_str(str);

} while (str[0]);

/* Function reads a string from standard input until a newline is
read. A NULL is appended.

*/
void read_str(char *s)
{ int 1i;
char c;
for (i = 0; (c = getchar()) !'= ’\n’; i++)
s[i] = c;
s[i] = NULL;
}
/* Function prints a string to standard output and terminates with a
newline.
*/
void print_str(char *s)
{ int 1i;

for (i = 0; s[i]; i++)
putchar(s[i]);
putchar(’\n’);

Figure 7.6: Code for string2.c

306 CHAPTER 7. ARRAYS

7.3 Arrays, Pointers, Pointer Arithmetic

Let us now examine how arrays are actually accessed in C. As we have seen, an array is a sequence
of objects, each of the same data type. The starting address of this array of objects, i.e. the
address of the first object in the array is called the base address of the array. The address of
each successive element of the array is offset from the base by the size of the array type, e.g. for
each successive element of an integer array, the address is offset by the size of an integer type
object. As we mentioned in the previous section, in C, the name of an array used by itself in
an expression evaluates to the base address of the array. That is, this value is a pointer type
and points to the first object of the array. The name of the array is said to point to the array.
Figure 7.7 shows an array, X[] with X pointing to (the first object of) the array. If the array is
an integer array, (float array, character array, etc.) then the type of X is int * (float *, char
*, etc.). Thus, the declaration of an array causes the compiler to allocate the specified number of
contiguous cells of the indicated type, as well as to allocate an appropriate pointer cell, initialized
to point to the first cell of the array. This pointer cell is given the name of the array. Since X
points to X[0], the following are equivalent:

X <---> &X[0]
Thus, the dereferenced pointer, *X, accesses the object, X[0], i.e. the following are equivalent:
*X <---> X[0]

As we have seen, pointer variables point to objects of a specific type. We might suspect that they
can be increased or decreased to point to contiguous successive or preceding objects of the same
type. In C, adding one to a pointer makes the resulting pointer point to the next object of the
same type. (The value of the new pointer equals the original value of the pointer increased by
the size of the object pointed to). For the array above, X + 1 points to X[1]; the increase in the
pointer value is made by the appropriate size of the type involved. For example, if X is an integer
array and an integer requires 4 bytes, then the value of X + 1 will be greater than that of X by
4. Adding k to a pointer results in a pointer to a successive object offset by £ objects from the
original. Thus, X + 0 points to the start of the array (the first element, X[0]), X + 1 points to
the next element, X[1], and X + k points to X[k] as can be seen in Figure 7.7. Similarly, &X[k] is
the same as X + k, and X[k] is the same as *(X + k). Table 7.1 summarizes pointer arithmetic
and indirect access of elements of an array. Pointer arithmetic may also involve subtraction; the
resulting pointer points to a previous object offset appropriately. Thus, for example, &X[3] - 1
points to X[2], &X[5] - 3 points to X[2], and so on.

In C array access is always made through pointers and indirection operators. Whenever an
expression such as X[k] appears in a program, the compiler interprets it to mean *(X + k). In
other words, objects of an array are always accessed indirectly. As we have seen previously, this
makes it particularly easy for a called function to indirectly access elements of an array allocated
in the calling function to store or retrieve values. Let us see how function calls handle array access
using the program, scores2.c of the last section. The relevant function calls in main() and the
corresponding function headers are shown below for easy reference:

7.3. ARRAYS, POINTERS, POINTER ARITHMETIC

X[n]
index

XorX+20

X+1

X+ 2

X +1

X+n-2
X+4+n-1

Figure 7.7: Pointer Arithmetic

Pointer Address of Array Indirect

Arithmetic ~ Operator Subscripting Reference

X + 0 &X[0] XJ0] “(X + 0)
X + 1 &X[1] X]1] (X + 1)
X + 2 &X[2] X[2] “(X + 2)
X + 3 &X[3] X[3] “(X + 3)
X + k &X[K] X[K] (X 4 k)

Table 7.1: Pointer Arithmetic and Indirect Access

307

subscripted expression

308 CHAPTER 7. ARRAYS

main()
{ int exam_scores[MAX];

n = read_intaray(exam_scores, MAX);
print_intaray(exam_scores, n);

t

int read_intaray(int scores[], int lim)

{

+
void print_intaray(int scores[], int lim)

{

When a formal parameter is declared in a function header as an array, it is interpreted as a pointer
variable, NOT an array. Even if a size were specified in the formal parameter declaration, only a
pointer cell is allocated for the variable, not the entire array. The type of the pointer variable is the
specified type. In our example, the formal parameter, scores, is an integer pointer. It is initialized
to the pointer value passed as an argument in the function call. The value passed in main() is
exam_scores, a pointer to the first element of the array, exam scores[]. Figure 7.8 illustrates
the connection between the calling function, main(), and the called function, read_intaray(). In
this case, the formal parameter, scores, is initialized to point to the value of exam_scores which
is a pointer to (the first element of) the array exam_scores[]. The Figure also shows that 1im is
initialized to 10.

Within the function, read_scores(), it is now possible to access all the elements of the ar-
ray, exam_scores[], indirectly. Since the variable, scores, in read_intaray() points to the
first element of the array, exam_scores[], *scores accesses the first element of the array, i.e.
exam_scores[0]. In addition, scores + 1 points to the next element of the array, so *(scores
+ 1) accesses the next element, i.e. exam_scores[1]. In general, *(scores + count) accesses
the element exam_scores[count]. To access elements of the array, we can either write *(scores
+ count) or we can write scores[count], because dereferenced array pointers and indexed array
elements are identical ways of writing expressions for array access.

The functions, read_intaray() and print_intaray() can be used to read objects into any
integer array and to print element values of any integer array, respectively. The calling function
must simply pass, as arguments, an appropriate array pointer and maximum number of elements.

These functions may also be written explicitly in terms of indirect access, for example:

/* Function reads scores in an array. */
int read_intaray2(int * scores, int lim)
{ int n, count = 0;

printf ("Type scores, EOF to quit\n");

7.3. ARRAYS, POINTERS, POINTER ARITHMETIC

main()

[> 0

4 >

exall_scores 3
4

5

6

7

8

9

read_intaray(int *[4] int [|,
scores lim

Figure 7.8: Array Pointers as Function Parameters

309

310 CHAPTER 7. ARRAYS

while ((count < 1lim) && (scanf("%d", &n) '= EOF)) {
*(scores + count) = n;
count++;

b

return count;

Alternatively, since scores is a pointer variable, we can increment its value each time so that it
points to the next object of integer type in the array, such as:

/* Function reads scores in an array. */
int read_intaray3(int * scores, int lim)
{ int n, count = 0;

printf ("Type scores, EOF to quit\n");

while ((count < 1lim) && (scanf("%d", &n) '= EOF)) {
xscores = n;
count++;
scores++;

b

return count;

The first time the loop is executed, *scores accesses the element of the array at index 0. The
local pointer cell, scores, is then incremented to point to the next element of the array, at index 1.
The second time the loop is executed, *scores accesses the array element at index 1. The process
continues until the loop terminates.

It is also possible to mix dereferenced pointers and array indexing;:

/* Function reads scores in an array. */
int read_intaray4(int scores[], int lim)
{ int n, count = 0;

printf ("Type scores, EOF to quit\n");

while ((count < 1lim) && (scanf("%d", &n) '= EOF)) {
*(scores + count) = n;
count++;

b

return count;

or:

/* Function reads scores in an array. */

7.3. ARRAYS, POINTERS, POINTER ARITHMETIC 311

int read_intaray5(int * scores, int lim)
{ int n, count = 0;

printf ("Type scores, EOF to quit\n");

while ((count < 1lim) && (scanf("%d", &n) '= EOF)) {
scores[count] = n;
count++;

b

return count;

We can also consider parts of an array, called a sub-array. A pointer to a sub-array is also an
array pointer; it simply specifies the base of the sub-array. In fact, as far as C is concerned, there
is no difference between an entire array and any of its sub-arrays. For example, a function call
can be made to print a sub-array by specifying the starting pointer of the sub-array and its size.
Suppose we wish to print the sub-array starting at exam_scores[3] containing five elements; the
expression, &exam scores[3] is a pointer to an array starting at exam scores[3]. The function
call is:

print_intaray(&exam_scores[3], 5);
Alternately, since exam_scores + 3 points to exam_scores[3], the function call can be:
print_intaray(exam_scores + 3, 5);

The passed parameters are shown visually in Figure 7.9. If either of the above function calls
is used in the program, scores2.c, the values of exam scores[3], exam scores[4], ..., and
exam_scores [7] will be printed.

7.3.1 Pointers: Increment and Decrement

We have just seen that an array name, e.g. aa, is a pointer to the array and that aa + i points to
aali]. We can illustrate this point in the program below, where the values of pointers themselves
are printed. A pointer value is a byte address and is printed as an unsigned integer (using
conversion specification for unsigned integer, %u). The program shows the relationships between
array elements, pointers, and pointer arithmetic.

/* File: arayptr.c
This program shows the relation between arrays and pointers.
*/
#include <stdio.h>
#define N 5

312 CHAPTER 7. ARRAYS

main()

[> 0

1

exall_scores g
4

5

6

7

8

9

read_intaray(int *[47] int [,)
scores lim

Figure 7.9: Pointer to a Sub-array

7.3. ARRAYS, POINTERS, POINTER ARITHMETIC 313

main()
{ int i, j, aalN];

printf ("***Pointers, Arrays, and Pointer Arithmetic***\n\n");

for (1 = 0; 1 < N; i++) {
aali] = 1 * 1y
printf("aa + %d = %u; &aal¥d] = %ul\n", i, aa + i, i, &aalil]);
printf("*(aa + %d) = %d; aallkd]l = %d\n", i, *(aa + i), i, aalil);

In the loop, we first assign a value to each aa[i]. We then print values to show that pointers, aa
+ i and &aali] are the same, i.e. that aa + i points to aa[i]. Next, we print the array element
values to show that *(aa + 1) is the same as aa[i]. A sample output for the program is shown
below:

***Pointers, Arrays, and Pointer Arithmetickkx

aa + 0 = 65480; &aal[0] = 65480
*(aa + 0) = 0; aal0] =0

aa + 1 = 65482; &aal[l] = 65482
*(aa + 1) = 1; aall] =1

aa + 2 = 65484; &aal[2] = 65484
*(aa + 2) = 4; aal2] = 4

aa + 3 = 65486; &aal[3] = 65486
*(aa + 3) = 9; aal3] =9

aa + 4 = 65488; &aal[4] = 65488
*(aa + 4) = 16; aal4] = 16

(In the host implementation where the above program was executed, two bytes are required for
integers; therefore, successive array element addresses are two bytes apart).

The next example shows that pointers may be incremented and decremented. In either case,
if the original pointer points to an object of a specific type, the new pointer points to the next
or previous object of the same type, i.e. pointers are incremented or decremented in steps of the
object size that the pointer points to. Thus, it is possible to traverse an array starting from a
pointer to any element in the array. Consider the code:

/* File: arayptr2.c
Pointers and pointer arithmetic.
*/
#include <stdio.h>
#define N 5

314

main()

{

float faray[N], *fptr;
int *iptr, iaray[N], i;

/* initialize */

for (1 = 0; 1 < N; i++) {
faray[i] = 0.3;
iaray[i] = 1;

/* initialize fptr to point
fptr = &farayl[3];

fptr = 1.; /
x(fptr - 1) = .9; /*
x(fptr + 1) = 1.1; /*

/* initialize iptr in the same way */

iptr = &iarayl[3];
*iptr = 0;

x(iptr - 1) = -1;
x(iptr + 1) = 2;

for (1 = 0; 1 < N; i++) {
printf ("faray[¥d] = £

to element

faray[3]
faray[2]
faray[4]

faray[3] */

1. x/
.9 x/
1.1 %/

", i, *(faray + 1));
printf("iaray[¥d] = %d\n", i, iaray[il);

CHAPTER 7. ARRAYS

The program is straightforward. It declares a float array of size 5, and an integer array of the same
size. The float array elements are all initialized to 0.3, and the integer array elements to 1. The

program also declares two pointer variables, one a float pointer and the other an integer pointer
Each pointer variable is initialized to point to the array element with index 3; for example, fptr is
initialized to point to the float array element, faray[3]. Therefore, fptr - 1 points to faray[2],
and fptr + 1 points to faray[4]. The value of *fptr is then modified, as is the value of *(fptr
- 1) and *(fptr + 1). Similar changes are made in the integer array. Finally, the arrays are

printed. Here is the output of the program:

faray[0] = 0.300000 iaray[0] = 1
faray[1] = 0.300000 iaray[1] = 1
faray[2] = 0.900000 iarayl[2]

faray[3] = 1.000000 iaray[3] = O
faray[4] = 1.100000 iaray[4] = 2

1]
[
—

7.3. ARRAYS, POINTERS, POINTER ARITHMETIC 315

7.3.2 Array Names vs Pointer Variables

As we have seen, when we declare an array, a contiguous block of memory is allocated for the cells
of the array and a pointer cell (of the appropriate type) is also allocated and initialized to point
to the first cell of the array. This pointer cell is given the name of the array. When memory is
allocated for the array cells, the starting address is fixed, i.e. it cannot be changed during program
execution. Therefore, the value of the pointer cell should not be changed. To ensure that this
pointer is not changed, in C, array names may not be used as variables on the left of an assignment
statement, i.e. they may not be used as an Lvalue. Instead, if necessary, separate pointer variables
of the appropriate type may be declared and used as Lvalues. For example, we can use pointer
arithmetic and the dereference operator to initialize an array as follows:

/* Use of pointers to initialize an array */
#include <stdio.h>
main()
{ int 1i;
float X[MAX];

for (1 = 0; 1 < MAX; i++)
(X + 1) = 0.0; / same as X[i] */

In the loop, *(X + 1) is the same as X[i]. Since X (the pointer cell) has a fixed value we cannot
use the increment operator or the assignment operator to change the value of X:

X=X+ 1; /* ERROR */
Here is an example of a common error which attempts to use an array as an Lvalue:

/* BUG: Attempt to use an array name as an Lvalue */
#include <stdio.h>
main()
{ int 1i;
float X[MAX];

for (i = 0; i < MAX; i++) {
*X = 0.0;
X++; /* BUG: X = X + 1; %/

In this example, X is fixed and cannot be used as an Lvalue; the compiler will generate an error
stating that an Lvalue is required for the ++ operator. However, we can declare a pointer variable,

316 CHAPTER 7. ARRAYS

which can point to the same type as the type of the array, and initialize it to the value of array
pointer. This pointer variable CAN be used as an Lvalue, so we can then rewrite the previous
array initialization loop as follows:

/* OK: A pointer variable is initialized to an array pointer and then
used as an Lvalue.

*/
#include <stdio.h>
main()
{ int 1i;
float *ptr, X[MAX];
ptr = X; /* ptr is a variable which can be assigned a value */
for (1 = 0; 1 < MAX; i++) {
xptr = 0.0; /* *ptr accesses X[i] */
ptr++;
+
+

Observe that the pointer variable, ptr, is type float *, because the array is of type float. It is
initialized to the value of the fixed pointer, X (i.e. the initial value of ptr is set to the same as that
of X, namely, &X[0]), and may subsequently be modified in the loop to traverse the array. The
first time through the loop, *ptr (X[0]) is set to zero and ptr is incremented by one so that it
points to the next element in the array. The process repeats and each element of the array is set
to 0.0. This behavior is shown in Figure 7.10. Observe that the final increment of ptr makes it
point to X[MAX]; however, no such element exists (recall, an array of size MAX has cells indexed 0 to
MAX - 1). At the end of the for loop, the value of ptr is meaningless since it now points outside
the array. Unfortunately, C does not prevent a program from accessing objects outside an array
boundary; it merely increments the pointer value and accesses memory at the new address. The
results of accessing the array with the pointer, ptr at this point will be meaningless and possibly
disastrous. It is the responsibility of the programmer to make sure that the array boundaries are
not breached. The best way of ensuring that a program stays within array boundaries is to write
all loops that terminate when array limits are reached. When passing arrays in function calls,
always pass the array limit as an argument as well.

Here is a similar error in handling strings and pointers:

/* BUG: Common error in accessing strings */
#include <stdio.h>

#define SIZE 100

main()

{ char ¢, msg[SIZE];

while ((c
*msg

getchar()) '= ’\n’) {

<5

7.3. ARRAYS, POINTERS, POINTER ARITHMETIC 317

x float X[MAX]
tr p------ >
SR
BN

Figure 7.10: Pointer Variables and Arrays

msg++; /* msg is fixed; it cannot be an Lvalue */

by
*msg = ’\0’;

The array name, msg is a constant pointer; it cannot be used as an Lvalue. We can rewrite the
loop correctly to read a character string as:

/* OK: Correct use of pointers to access a string */
#include <stdio.h>

#define SIZE 100

main()

{ char ¢, *mp, msg[SIZE];

mp = msg;
while ((c = getchar()) !'= ’\n’) {
*mp = C;
mp++; /* mp is a variable; it can be an Lvalue */
by
*mp =)\O);

318 CHAPTER 7. ARRAYS

[J I I e L e |
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
mp A
1 1 1 1 1
1 1 1 1 1
4 Y Y Y Y Y
° . 7h7 767 717 717 707 7\07
msg

Figure 7.11: Pointer Variables and Strings

Observe in this case, mp is a character pointer since the array is a character array. The variable,
mp is initialized to the value of msg. The dereferenced pointer variable, *mp, then accesses the
elements of the array in sequence as mp is incremented (see Figure 7.11). The loop terminates
when a newline is read, and a terminating NULL is added to the string.

Remember, pointer variables must be initialized to point to valid objects; otherwise, fatal
errors will most likely occur. For example, if the pointer, mp, in the above code were not initialized
to the value of msg, a serious and probably fatal error will occur when the pointer is dereferenced
and an attempt is made to access the memory cell pointed to by mp. This is because the initial
value of mp would be some garbage value which may point to an invalid memory address causing
a fatal memory fault to occur. If the garbage value were not an invalid memory address, the loop
would write characters to an unknown memory address, possibly destroying other valid data.

As we’ve said, an array names cannot be used as an Lvalues. On the other hand, when a
2 y 2
function is used to access an array, the corresponding formal parameter is a pointer variable. This
Y, p p p
pointer variable can be used as an Lvalue. Here is a function to print a string:

/* Function prints a string pointed to by mp. */
void our_strprint(char *mp)

{
while (*mp) {
putchar (kmp) ;
mp++; /* mp is a variable; it can be an Lvalue */
by
putchar(’\n’);
by

Here, mp is a pointer variable, which, when the function is called, we assume will be initialized to
point to some NULL terminated string. The expression, *mp, accesses the elements of the array, and
the loop continues as long as *mp is not NULL. Each time the loop is executed, a character, *mp,
is written, and mp is incremented to point to the next character in the array. When *mp accesses
the NULL, the loop terminates and a newline character is written.

7.4. STRING ASSIGNMENT AND 1/0 319

7.4 String Assignment and I/0

As we have seen, a character string in C is an array of characters with a terminating NULL character.
Access to a character string requires only a pointer to the character array containing the characters.
It is common to use the term, string, to loosely refer to either an array of characters holding the
string, or to a character pointer that may be used to access the string; it should be clear from
context which is meant.

When a character string constant is used in a program, the compiler automatically allocates
an array of characters, stores the string in the array, appends the NULL character, and replaces the
string constant by the value of a pointer to the string. Therefore, the value of a string constant is
the value of a pointer to the string. We can use string constants in expressions just as we can use
the names of arrays. Here is an example:

char *mp, msg[SIZE];

mp = "This is a message\n";

The compiler replaces the string constant by a pointer to a corresponding string. Since mp is a
character pointer variable, we can assign a value of a fixed string pointer to mp. If necessary we
can traverse and print the string using this pointer. On the other hand, since msgl[] is declared
as a character array, we cannot make the following assignment:

msg = "This is a message\n"; /* ERROR */

since we are attempting to modity a constant pointer, msg.

A string constant is just another string appropriately initialized and accessed by a pointer to it.
We will therefore make no distinctions between strings and string constants; they are both strings
referenced by string pointers. While strings and string constants are both strings, the contents of
string constants cannot be changed in ANSI C.

We have been using string constants as format strings for printf () and in scanf (), which
expect their first argument to be a string pointer; i.e. a char pointer. The compiler has automat-
ically created an appropriate string and replaced the string by a string pointer. Instead of writing
a format string directly in a function call, we could pass a string pointer that points to a format
string. Here is an example:

char *mesg;
int n;

n=1;
mesg = "This is message number %d\n";
printf (mesg, n);

320 CHAPTER 7. ARRAYS

The string constant is stored by the compiler somewhere in memory as an array of characters with
an appended NULL character. A pointer to this character array is assigned to the character pointer
variable, mesg. The function printf() then uses the pointer to retrieve the format string, and
print the string:

This is message number 1

The functions, printf () and scanf () can be used for string input and output as well. Array
names or properly initialized pointers to strings must be passed as arguments in both cases. The
conversion specification for strings is %s. For example, consider the task of reading strings and
writing them out. Here is an example program.

/* File: fcopy.c
This program reads strings from standard input using scanf() and writes
them to standard output using printf().

*/

#include <stdio.h>

#include "araydef.h"

main()

{ char mesg[SIZE];

printf ("***Strings: Formatted I/0%**\n\n");
printf ("Type characters, EOF to quit\n");
while (scanf("/s", mesg) !'= EOF)

printf ("%s\n", mesg);

Sample Session:

*x**xStrings: Formatted I/0%*x

Type characters, EOF to quit
This Is a test
This
is
a
test
°D

The conversion specification, %s indicates a string and the corresponding matching argument must
be a char pointer. When scanf () reads a string it stores it at the location pointed to by mesg —
note we do not use &mesg since mesg is already a pointer to an array of characters. Then, printf ()
prints the string pointed to by mesg. When scanf () reads a string using %s, it behaves like it

7.5. ARRAY INITIALIZERS 321

does for numeric input, skipping over leading white space, and reading the string of characters
until a white space is reached. Thus, scanf () can read only single words, storing the string of
characters read into an array pointed to by the argument, mesg and appending a NULL character
to mark the end of the string. On the other hand, printf () prints the string pointed to by its
argument, mesg, printing the entire string (including any white space) until a NULL character is
reached. The sample session shows that each time scanf () reads a string, only a single word is
read from the input line and then printed.

As we said, when scanf () reads a string, the string argument must be a pointer that points to
an array where the input characters are to be stored. For example, here are correct and incorrect
ways of using scanf ():

char * mp, * mptr, msg[SIZE];

scanf (")s", mp); /* BUG */
scanf ("%s", msg); /*x 0K *x/
mptr = msg;

scanf ("%s", mptr); /* 0K */

The first scanf () is incorrect because mp has not been initialized and, therefore, does not point
to an array where a string is to be stored. The other statements are correct; in each case, the
pointer points to an array.

7.5 Array Initializers

ANSI C allows automatic array variables to be initialized in declarations by constant initializers
as we have seen we can do for scalar variables. These initializing expressions must be constant
(known at compile time) values; expressions with identifiers or function calls may not be used in
the initializers. The initializers are specified within braces and separated by commas. Here are
some declarations with constant initializers:

int ex[10] = { 12, 23, 9, 17, 16, 49 };
char word[10] = { ’h’, ’e’, ’1’, 1, ’0’, ’\0’ };

Each constant initializer in the braces is assigned, in sequence, to an element of the array starting
with index 0. If there are not enough initializers for the whole array, the remaining elements of
the array are initialized to zero. Thus, ex[0] through ex[5] are assigned the values 12, 23, 9,
17, 16, and 49, while ex[6] through ex[9] are initialized to zero. Similarly, word is initialized
to a string "hello". String initializers may be written as string constants instead of character
constants within braces, for example:

char mesgl[]

= "This is a message'";
char name[20] = "John Doe'";

322 CHAPTER 7. ARRAYS

In the case of mesg[], enough memory is allocated to accommodate the string plus a terminating
NULL, and we do not need to specify the size of the array. The above string initializers are allowed
as a convenience, the compiler initializes the array at compile time. Remember, initializations
are not assignment statements; they are declarations that allocate and initialize memory. As with
other arrays, these array names cannot be used as Lvalues in assignment statements.

Here is a short program that shows the use of initializers

/* File: init.c
Program shows use of initializers for arrays.
*/
#include <stdio.h>
#define MAX 10
main()
{ int i, ex[MAX] { 12, 23, 9, 17, 16, 49 };
char word[MAX] {’s’, 'm’>, ’1’, ’1’, ’e’, ’\0’};
char mesg[] = "Message of the day is: ";

printf (""***xArray Declarations with Initializers***\n\n");
printf ("%s’s\n", mesg, word);
printf("Initialized Array:\n");
for (i= 0; 1 < MAX; i++)
printf ("/4d\n", ex[i]);

Sample Output:

xArray Declarations with Constant Initializersx*

Message of the day is: Smile
12
23

The first printf () statement uses %s to print each of the two strings accessed by pointers, mesg
and word. Finally, the loop prints the array, ex, one element per line.

7.6. ARRAYS FOR DATABASES 323

id hrs rate regular overtime
o o o o o
index 0
index i

Figure 7.12: Data Record Spread Over Several Arrays

7.6 Arrays for Databases

We now consider our payroll task that reads input data and calculates pay as before, but the
program prints a table of computed pay for all the id’s. The algorithm uses arrays to store the
data, but is otherwise very similar to our earlier programs: get data, calculate pay, and print
results. We will use functions to perform these subtasks. Here are the prototypes:

/* File: payutil.h =/
int getdata(int id[], float hrs[], float ratel[], int lim);
void calcpay(float hrs[], float ratel[], float regl]l, float over[], int n);
void printdata(int id[], float hrs[], float ratel],
float regl], float over[], int n);

The function, getdata() gets the data into the appropriate arrays for id’s, hours worked, and
rate of pay; returning the number of id’s entered by the user. While the arrays id[], hrs[], and
rate[] are individual arrays, we make sure that the same value of the array index accesses the
data for a given id. For example, id[i] accesses an id number and hrs[i] and rate[i] access
hours worked and rate of pay for that id number. In other words, an input data record for each id
number resides at the same index in these arrays.oWe can think of this data structure as a table,
where the columns are the arrays holding different pieces of information; and the rows are the
data for an individual id, as shown in Figure 7.12.

Next, calcpay () calculates and stores regular and overtime pay for each id in arrays, regpay[]
and overpay[] (columns), at the same array index as the input data record. Thus, the entire pay-
roll data record for each id number is at a unique index in each of the arrays. Finally, printdata()

324 CHAPTER 7. ARRAYS

/* File: paytab.c
Other Source Files: payutil.c
Header FIles: paydef.h, payutil.h
Program calculates and stores payroll data for a number of id’s. Gets
data, calculates pay, and prints data for all id’s.
*/
#include <stdio.h>
#include '"paydef.h"
#include "payutil.h"
#define MAX 10

main()
{ int n, id[MAX];
float hrs[MAX], rate[MAX], regpay[MAX], overpay[MAX];

printf ("***Payroll Program#***\n\n");

n = getdata(id, hrs, rate, MAX);

calcpay(hrs, rate, regpay, overpay, n);
printdata(id, hrs, rate, regpay, overpay, n);

Figure 7.13: Code for paytab.c

prints each payroll record, i.e. the input data as well as the calculated regular, overtime, and total
pay. We will write getdata(), printdata(), and calcpay() in the file, payutil.c. The proto-
types shown above for these functions are in the file, payutil.h. This header file is included in
the program file paytab.c, where main() will reside (see Figure 7.13). We also include the header
file, paydef .h which defines the symbolic constants, REG LIMIT and OT_FACTOR.:

/* paydef.h */
#define REG_LIMIT 40
#define OT_FACTOR 1.5

The program calls getdata() which reads data into the appropriate arrays and stores the
returned value (the number of id’s) into n. It then calls on calcpay() to calculate the pay for n
people, filling in the regpay[] and overpayl[] arrays, and calls printdata() to print the input
data and the results for n people. The code for these functions is shown in Figure 7.14.

In the function, getdata(), scanf () is used to read data for the itemsa, using n to count and
index the data items in the arrays. We use pointer arithmetic to pass the necessary arguments to
scanf (). For example, to read data into id[n], we must pass its address &id[n]. Instead, we
pass id + n which is identical to &id[n]. The function, getdata(), reads data for as many id’s
as possible, returning either when there is no more data (a zero id value) or the arrays are full (n
reaches the limit, 1im passed in). If the array limit is reached, an appropriate message is printed

7.6. ARRAYS FOR DATABASES 325

/* File: payutil.c */
#include <stdio.h>
#include '"paydef.h"
#include "payutil.h"
/* Gets data for all valid id’s and returns the number of id’s */
int getdata(int id[], float hrs[], float ratel[], int 1lim)
{ int n = 0;
while (n < lim) {
printf ("ID <zero to quit>: ");
scanf ("%d", id + n); /* id + n is same as &id[n] */
if (id[n] <= 0) return n;
printf ("Hours Worked: ");

scanf ("%f", hrs + n); /* hrs + n is same as &hrs[n] */
printf("Rate of Pay: ");
scanf ("%f", rate + n); /* rate + n is same as &ratel[n] */
n++;

t

printf ("No more space for data - processing data\n");

return n;

t
/* Calculates regular and overtime pay for each id */
void calcpay(float hrs[], float ratel[], float regl], float over[], int n)
{ int 1i;
for (1 = 0; 1 < n; i++) {
if (hrs[i] <= REG_LIMIT) {
regli] = hrs[i] * ratel[il;
over[i] = 0;

t
else {

regl[i] = REG_LIMIT * ratel[i];

over[i] = (hrs[i] - REG_LIMIT) * OT_FACTOR * ratel[i];
t

/* Prints a table of payroll data for all id’s. */
void printdata(int id[], float hrs[], float ratel],
float regl[], float over[], int n)
{ int 1i;
printf(”***PAYROLL: FINAL REPORT***\n\n") ;
printf(”%4S\t%58\t%58\t%6S\t%GS\t%GS\n”, "ID'", "HRS", "RATE",
"REG", "OVER", "TOT");
for (1 = 0; 1 < n; 1i++)
printf(”%4d\t%5.2f\t%5.2f\t%6.2f\t%6.2f\t%6.2f\n”,
id[i], hrs[i], ratelil, regli], overl[il,
regli] + overl[il);

Figure 7.14: Code for payutil.c

326 CHAPTER 7. ARRAYS

and the input is terminated. The function returns the number of id’s placed in the arrays. The
other functions in the program are straight forward; each index accesses the data record for the
id at that index.

As written, getdata() terminates input of data when an invalid id (id <= 0) is entered. An
alternative might be to read a data item in a temporary variable first, examine it for validity if
desired, and then assign it to an array element. For example:

scanf ("%d", &x);
if (x > 0)

id[n] = x;
else

return n;

Here is a sample session for the program, paytab.c compiled and linked with payutil.c:

Sample Session:

***Payroll Program**x*

ID <zero to quit>: 8
Hours Worked: 50

Rate of Pay: 14

ID <zero to quit>: 12
Hours Worked: 45

Rate of Pay: 12.50

ID <zero to quit>: 2
Hours Worked: 20

Rate of Pay: b

ID <zero to quit>: b
Hours Worked: 40

Rate of Pay: 10

ID <zero to quit>: 0
xkPAYROLL: FINAL REPORT*

ID HRS RATE REG OVER TOT

8 50.00 14.00 560.00 210.00 770.00
12 45.00 12.50 500.00 93.75 593.75
2 20.00 5.00 100.00 0.00 100.00
5 40.00 10.00 400.00 0.00 400.00

7.7. COMMON ERRORS 327

7.7 Common Errors

1. Use of an array name as an Lvalue: An array name has a fixed value of the address where
the array is allocated. It is NOT a variable; it cannot be used as an Lvalue and assigned a

new value. Here are some example:

(a)

int x[10];
while (*xx) {

x++; /* ERROR */

b

x cannot be used as an Lvalue and assigned new values.

char msg[80];
while (*msg) {

msg++; /* ERROR */
by

msg cannot be used as an Lvalue.

char msg[80];

msg = "This is a message"; /* ERROR */
msg cannot be an Lvalue. The right hand side is not a problem. Value of a string

constant is a pointer to an array automatically allocated by the compiler.

char msg[80] = "This is a message";

/* OK: array initialized to the string when memory is allocated */

A string constant initializer is correct. When memory is allocated for the array, it is
initialized to the string constant specified.

2. Failure to define an array: Definition of an array is required to allocate memory for storage

of an array of objects. A pointer type allocates memory for a pointer variable, NOT for

an array of objects. Suppose, read_str() reads a string and stores it where its argument

points:
int *pmsg; /* memory allocated for a pointer variable */
read_str(pmsg) ; /* ERROR: memory not allocated for a string */

No memory is allocated for a string, i.e. an array of characters. The variable, pmsg points to
some garbage address; read_str () will attempt to store the string at that garbage address.
The address may be invalid, in which case there will be a memory fault; a fatal error.

Allocate memory for a string with an array declaration:

328

CHAPTER 7. ARRAYS

int str[MAX];
read_str(str);

Array pointer not passed to a called function: If a called function is to store values in an
array for later use by the calling function, it should be passed a pointer to an array defined
in the calling function. Here is a program with an error.

#include <stdio.h>
main()
{ char * p, s[80],
* get_word(char * s);

p = get_word(s); /* ERROR: returned pointer points to freed memory */

puts(p); /* Prints garbage */

by

char * get_word(char *str)

{ char wd[30]; /* memory allocated for array wd[] */
int 1 = 0;
while (*str == ’ 7) /* skip leading blanks */
while (*str '= ’ 7) /* while not a delimiter */

wd[i++] = *str++; /% copy char into array wd[] */

wd[i] = ’\0’; /* append a NULL to string in wd[] */
return wd; /* return pointer to wd[] */

+ /* memory for array wd[] is freed */

The function, get_word() copies a word from a string, s, into an automatic array, wd[] for
which memory is allocated in get_word(). When get_word() returns, a pointer, wd, to the
calling function, the memory allocated for wd[] is freed for other uses, since it was allocated
only for get_word(). The data stored in wd[] may be overwritten with other data. In the
calling function, p is assigned an address value which points to freed memory. The function,
puts (), will print a garbage sequence of characters pointed to by p. At times, the memory
may not be reused right away and it will print the correct string. At other times, it will
print out garbage.

Errors in passing array arguments: Only array names, i.e., pointers to arrays, should be
passed as arguments. The following are all in ERROR:

func(s[]);
func(s[80]);
func(*s);

Pointers to arrays, i.e. array names by themselves, should be passed as arguments in function
calls. Arguments in the above function calls are not pointers. The first one is meaningless
in an expression; the second attempts to pass an element at index 80; the third passes a
dereferenced pointer, not the pointer to the array.

7.8. SUMMARY 329

5. Errors in declaring formal parameters: Formal parameters referencing arrays in function
definitions should be specified to be pointers, not objects of a base type. Consider a function,
init (), that initializes elements of an integer array to some values. The following is an error:

init(int aray)

{

The parameter declared is an integer not a pointer to an integer. It should be either of the
following:

init(int * aray)
OR
init(int arayl[])

In either of the above cases, memory for an integer pointeris allocated, NOT for a new array
of integers.

6. Misinterpreting formal parameter declarations: Even if an array size is specified in a formal
parameter, memory is not allocated for an array but for a pointer.

init(int aray[10])

The above declares aray as an integer pointer.

7. Pointers are not initialized:
int x, * px;
x = 10;
printf ("*px = %d\n", *px);

Since value of px is garbage, there will be a fatal memory fault when an attempt is made to
evaluate *px.

7.8 Summary

In this Chapter, we have introduced one form of compound data type: the array. An array is a
block of a number of data items all of the same type allocated in contiguous memory cells. We
have seen that, in C, an array may be declared using the syntax:

<type-specifier><identifier>[<size>];

330 CHAPTER 7. ARRAYS

specifying the type of the data items, and the number of elements to be allocated in the array.
As we saw, such a declaration in a function causes <size> data items of type <type-specifier> to
be allocated in contiguous memory, AND a pointer cell to be allocated of type <type-specifier>*
(pointer to <type-specifier>), given the name, <identifier>, and initialized to point to the first cell
of the array. More specifically, for a declaration like:

int data[100];

allocates 100 int cells, and an int * cell named data which is initialized to point to the block of
integers.

We saw that the data items in an array can be accessed using an index; i.e. the number of
the item in the block. Numbering of data items begins with index 0, to the size - 1. We use the
index of an element in a subscripting expression with syntax:

<identifier>[<expression>]

where <identifier> is the name of the array, and the <expression> in the square brackets ([]) is
evaluated to the index value. So, for our previous example, the statement:

datal[0] = 5;
sets the integer value, 5, into the first cell of the array, data. While:
datal[i] = datali-1];

would copy the value from the element with index i - 1 to its immediate successor in the array.

The data types of the elements of an array may be any scalar data type; int, float, or char.
(We will see other types for array elements in later chapters). We have cautioned that, in C, no
checking is done on the subscripting expressions to ensure that the index is withing the block
of data allocated (i.e. that the subscript is in bounds). It is the programmers responsibility to
ensure the subscript is in bounds. We have seen two ways of doing this: to keep the value of the
limit or the extent of data in the array in a separate integer variable and perform the necessary
comparisons, or to mark the last item in the array with a special value. The most common use of
this later method is in the case of an array of characters (called a string), where the end of the
string is indicated with the special character, NULL (whose value is 0).

We have also discussed the equivalence of subscripting expressions and pointer arithmetic;
i.e. that a subscripting expression, datal[i], is equivalent to (and treated by the compiler as) the
pointer expression, *(data + i). Remember, the name of the array is a pointer variable, pointing
to the first element of the array. These two forms of array access may be used interchangebly
in programs, as fits the logic of the operation being performed. It is the semantics of pointer
arithmetic that will compute the address of the indexed element correctly.

7.8. SUMMARY 331

In addition, we have seen that passing arrays as parameters to functions is done by passing a
pointer to the array (the array name). The cells of data are allocated in the calling function, and
the called function can access them indirectly using either a pointer expression or a subscripting
expression. Remember, a parameter like:

int func(int al])

(even if it has a <size> in the brackets) does NOT allocate integer cells for the array; it merely
allocates an int * cell which will be given a pointer to an array in the function call. Such a
parameter is exactly equivalent to:

int func(int *a)

We have discussed the fact that the pointer cell, referenced using the name of the array, is
a constant pointer cell; i.e. it may not be changed by the program (it may not be used as an
Lvalue). However; additional pointer cells of the appropriate type may be declared and initialized
to point to the array (by the programmer) and can then be used to traverse the array with pointer
arithmetic (such as the ++ or -- operators).

We have shown how arrays can be initialized in the declaration (a bracketed, comma separated
list of values, or, for strings, a string constant). We have seen the semantics of string assignment
and how strings can be read and printed by scanf() and printf() using the %s conversion
specifier. Remember, for scanf (), %s behaves like the numeric conversion specifiers; it skips
leading white space and terminates the string (with a NULL) at the first following white space
character.

Finally, we have shown an example of using arrays in a data base type applications, where
arrays of different types were used to hold a collection of payroll records for individuals. In that
example, the elements at a specific index in all of the arrays corresponded to one particular data
record.

The array is an important and powerful data structure in any programming language. Once
you master the use of arrays in C, the scale and scope of your programming abilities expand
tremendously to include just about any application.

332 CHAPTER 7. ARRAYS

7.9 Exercises

With the following declaration:

int *p, x[10];
char *t, s[100];

Explain each of the following expressions. If there is an error, explain why it is an error.

L. (a) X
(b) x +1i
(c) *(x + 1)
(d) X+

2. (a) P = X;
(b) *p
(c) p++;
(d) p++;
(e) p--;
(f) --p;

3. (a)p=x+5;
(b) *p;
(c) --p;
(d) P*;

4. scanf("}s", s);

Input: Hello, Hello.

5. printf("%s\n", s);
6. scanf ("%s", t);
t = s;

scanf ("%s", t);

Check the following problems; find and correct errors, if any. What will be the output in
each case.

7.9. EXERCISES 333

7. main()
{ int i, x[10] = { 1, 2, 3, 4};

for (1 = 0; i < 10; i++) {
printf ("/4d\n", *x);
X++;

b

8. main()
{ int i, *ptr, x[10] = { 1, 2, 3, 4};

for (i = 0; i < 10; i++) {
printf ("/d\n", *ptr);
ptr++;

9. main()
{ int i, x[10] = { 1, 2, 3, 4};

for (1 = 0; i < 10; i++)
printf("%d\n", (x + 1));

10. main()
{ int i, x[10] = { 1, 2, 3, 4};

for (1 = 0; i < 10; i++)
printf("%d\n", *(x + i));

11. main()
{ int i, *ptr, x[10] = {1, 2, 3, 4};

ptr = x;

for (1 = 0; 1 < 10; i++) {
printf ("%d\n", *ptr);
ptr++;

12. main()
{ int i, *ptr, x[10] = {1, 2, 3, 4};

ptr = x;
for (i = 0; 1 < 10; i++) {
printf ("%d\n", ptr);

334

13.

14.

15.

16.

17.

18.

ptr++;
t
t
main()
{ char x[10];
x = "Hawaii;
printf("%s\n", x);
t
main()
{ char *ptr;
ptr = "Hawaii";
printf ("%s\n", ptr);
t
main()
{ char *ptr, x[10] = "Hawaii';
for (i = 0; i < 10; i++)
printf("/4d %d %d\n", x + i, *(x + 1), x[i]);
t
main()

{ char x[10];

scanf ("%s", x);
printf("%s\n", x);
}

The Input is:
Good Day to You

main()
{ char *ptr;

scanf (")s", ptr);

printf("%s\n", ptr);
+

The Input is:
Good Day to You

Here is the data stored in an array

CHAPTER 7. ARRAYS

7.9. EXERCISES
char s[100];
Hawaii\OManoa\o0

What will be printed out by the following loop?

i=0;

while (s[1]) {
putchar(s[il]);
i++;

335

336

CHAPTER 7. ARRAYS

7.10 Problems

10.

11.

12.

13.

14.

15.

16.

. Write a program that uses the sizeof operator to print the size of an array declared in the

program. Use the sizeof operator on the name of the array.

. Write a function that prints, using dereferenced pointers, the elements of an array of type

float.

. Write a function that checks if a given integer item is in a list. Traverse the array and check

each element of the list. If an element is found return True; if the array is exhausted, return

False.

Write a function that takes an array of integers and returns the index where the maximum
value is found.

Write a function that takes an array and finds the index of the maximum and of the minimum.

Use arrays to house sets of integers. A set is a list of items. Each item of a list is a member
of a list and appears once and only once in a list. Write the following set functions.

Test if a number is a member of a set: is the number present in the set?

Union of two sets A and B: the union is a set that contains members of each of the two sets

A and B.

Intersection of two sets A and B: the intersection contains only those members that are
members of both the sets A and B.

. Difference of two sets A and B: The new set contains elements that are members of A that

are not also members of B.

Write a function to read a string from the standard input. Read characters until a newline
is reached, discard the newline, and append a NULL. Use array indexing.

Write a function to read a string from the standard input. Read characters until a newline
is reached, discard the newline, and append a NULL. Use pointers.

Write a function to write a string to the standard output. Write characters until a NULL is
reached, discard the NULL, and append a newline. Use pointers.

Write a function to change characters in a string: change upper case to lower case and vice
versa. Use array indexing.

Write a function to change characters in a string: change upper case to lower case and vice
versa. Use pointers.

Write a function that counts and returns the number of characters in a string. Do not count
the terminating NULL. Use array indexing.

Write a function that counts and returns the number of characters in a string. Do not count
the terminating NULL. Use array indexing.

7.10. PROBLEMS 337

17. Write a function that removes the last character in a string. Use array indexing to reach the
last element and replace it with a NULL.

18. Write a function that removes the last character in a string. Use pointers to traverse the
array.

19. Repeat problems 24 and 25, but use the function of problems 22 or 23.

338 CHAPTER 7. ARRAYS

